Patterned Polymeric Surfaces to Study the Influence of Nanotopography on the Growth and Differentiation of Mesenchymal Stem Cells

  • Cristian Pablo Pennisi
  • Vladimir Zachar
  • Trine Fink
  • Leonid Gurevich
  • Peter Fojan
Part of the Methods in Molecular Biology book series (MIMB, volume 1058)


The implementation of micro- and nanotechnologies to biomaterials constitutes a unique platform to improve our understanding on microenvironmental regulation of stem cell functions. In the recent years, various methods have been developed for the fabrication of micro- and nanopatterned polymeric culture substrates, and many of these novel surfaces are opening possibilities for new applications. Here, we provide procedures for creating nanoscale topographic features on films of poly(lactic acid), a biodegradable polymer frequently used for the fabrication of tissue engineering scaffolds. In addition, we provide methods to assess the growth and differentiation of mesenchymal stem cells cultured on the substrates.


Substrate topography Biodegradable polymers Poly(lactic acid) Cell growth Cell differentiation Mesenchymal stem cells Adipose-derived stem cells 


  1. 1.
    Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nat Rev Mol Cell Biol 462(7272):433–441Google Scholar
  2. 2.
    Edalat F, Bae H, Manoucheri S et al (2012) Engineering approaches toward deconstructing and controlling the stem cell environment. Ann Biomed Eng 40(6):1301–1315PubMedCrossRefGoogle Scholar
  3. 3.
    Nikkhah M, Edalat F, Manoucheri S et al (2012) Engineering microscale topographies to control the cell-substrate interface. Biomaterials 33(21):5230–5246PubMedCrossRefGoogle Scholar
  4. 4.
    Piscioneri A, Campana C, Salerno S et al (2011) Biodegradable and synthetic membranes for the expansion and functional differentiation of rat embryonic liver cells. Acta Biomater 7(1):171–179PubMedCrossRefGoogle Scholar
  5. 5.
    Di Nardo PD, Forte G, Franzese O et al (2009) Interfacing sca-1 pos mesenchymal stem cells with biocompatible scaffolds with different chemical composition and geometry. J Biomed Biotechnol 2009:910610PubMedGoogle Scholar
  6. 6.
    Lee I-C, Lee Y-T, Yu B-Y et al (2009) The behavior of mesenchymal stem cells on micropatterned PLLA membranes. J Biomed Mater Res 91A(3):929–938CrossRefGoogle Scholar
  7. 7.
    Leonard DJ, Pick LT, Farrar DF et al (2009) The modification of PLA and PLGA using electron-beam radiation. J Biomed Mater Res 89A:567–574CrossRefGoogle Scholar
  8. 8.
    Cairns M-L, Dickson GR, Orr JF et al (2012) The potential of electron beam radiation for simultaneous surface modification and bioresorption control of PLLA. J Biomed Mater Res A 100A:2223–2229Google Scholar
  9. 9.
    Bernards DA, Desai TA (2010) Nanoscale porosity in polymer films: fabrication and therapeutic applications. Soft Matter 6(8):1621PubMedCrossRefGoogle Scholar
  10. 10.
    Francois B, Pitois O, Francois J (1995) Polymer films with a self-organized honeycomb morphology. Adv Mater 7(12):1041–1044CrossRefGoogle Scholar
  11. 11.
    Fukuhira Y, Kitazono E, Hayashi T et al (2006) Biodegradable honeycomb-patterned film composed of poly(lactic acid) and dioleoylphosphatidylethanolamine. Biomaterials 27(9):1797–1802PubMedCrossRefGoogle Scholar
  12. 12.
    Chaudhuri JB, Davidson MG, Ellis MJ et al (2008) Fabrication of honeycomb-structured poly(DL-lactide) and poly[(DL-lactide)-co-glycolide)] films and their use as scaffolds for osteoblast-like cell culture. Macromol Symp 272(1):52–57CrossRefGoogle Scholar
  13. 13.
    Foldberg S, Petersen M, Fojan P et al (2012) Patterned poly (lactic acid) films support growth and spontaneous multilineage gene expression of adipose-derived stem cells. Colloids Surf B Biointerfaces 93:92–99PubMedCrossRefGoogle Scholar
  14. 14.
    Dalby MJ, Yarwood SJ, Riehle MO et al (2002) Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp Cell Res 276(1):1–9PubMedCrossRefGoogle Scholar
  15. 15.
    Dolatshahi-Pirouz A, Pennisi CP, Skeldal S et al (2009) The influence of glancing angle deposited nano-rough platinum surfaces on the adsorption of fibrinogen and the proliferation of primary human fibroblasts. Nanotechnology 20(9):095101PubMedCrossRefGoogle Scholar
  16. 16.
    Pennisi CP, Dolatshahi-Pirouz A, Foss M et al (2011) Nanoscale topography reduces fibroblast growth, focal adhesion size and migration-related gene expression on platinum surfaces. Colloids Surf B Biointerfaces 85(2):189–197PubMedCrossRefGoogle Scholar
  17. 17.
    Fink T, Rasmussen JG, Lund P et al (2011) Isolation and expansion of adipose-derived stem cells for tissue engineering. Front Biosci 3:256–263CrossRefGoogle Scholar
  18. 18.
    Zachar V, Rasmussen JG, Fink T (2011) Isolation and growth of adipose tissue-derived stem cells. Methods Mol Biol 698:37–49PubMedCrossRefGoogle Scholar
  19. 19.
    Fink T, Lund P, Pilgaard L et al (2008) Instability of standard PCR reference genes in adipose-derived stem cells during propagation, differentiation and hypoxic exposure. BMC Mol Biol 9:98PubMedCrossRefGoogle Scholar
  20. 20.
    Lund P, Pilgaard L, Duroux M et al (2009) Effect of growth media and serum replacements on the proliferation and differentiation of adipose-derived stem cells. Cytotherapy 11(2):189–197PubMedCrossRefGoogle Scholar
  21. 21.
    Yang S, Pilgaard L, Chase LG et al (2012) Defined xenogeneic-free and hypoxic environment provides superior conditions for long-term expansion of human adipose-derived stem cells. Tissue Eng Part C Methods 18(8):593–602PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Cristian Pablo Pennisi
    • 1
  • Vladimir Zachar
    • 1
  • Trine Fink
    • 1
  • Leonid Gurevich
    • 1
  • Peter Fojan
    • 1
  1. 1.Laboratory for Stem Cell Research, Department of Health Science and TechnologyAalborg UniversityAalborgDenmark

Personalised recommendations