Skip to main content

Epitope Mapping by Printed Peptide Libraries

  • Protocol

Part of the book series: Springer Protocols Handbooks ((SPH))

Affordable high-density peptide arrays are needed to routinely define the exact binding sites of antibodies. In terms of prize and density peptide arrays currently lag far behind oligonucleotide arrays that are available in densities exceeding 50.000 oligonucleotides per cm2. This is mainly due to the monomer-by-monomer repeated consecutive coupling of 20 different amino acids associated with the lithographic methods, which adds up to an excessive number of coupling cycles. The combinatorial synthesis of peptide arrays based on electrically charged solid amino acid particles circumvents this problem. A colour laser printer or a microchip consecutively address the different charged particles to a solid support, where a complete layer of solid amino acid particles is melted at once. This releases hitherto immobilized amino acids to couple all 20 different amino acids to the support in one single coupling reaction.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Beyer M, Felgenhauer T, Bischoff FR, Breitling F, Stadler V (2006) A novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption. Biomaterials 27:3505–3514

    Article  PubMed  CAS  Google Scholar 

  • Beyer M, Nesterov A, Block I, König K, Felgenhauer T, Fernandez S, Leibe K, Torralba G, Hausmann M, Trunk U, Lindenstruth V, Bischoff FR, Stadler V, Breitling F (2007) Combinatorial synthesis of peptide arrays onto a computer chip’s surface. Science 318:1888

    Article  PubMed  CAS  Google Scholar 

  • Borsenberger PM, Weiss DS (2002) Photoreceptors: organic photoconductors. In: Diamond AS, Weiss DS (eds) Handbook of imaging materials, 2nd edn. Marcel Dekker, New York, pp 369–423

    Google Scholar 

  • Breitling F, Felgenhauer T, Nesterov A, Lindenstruth V, Stadler V, Bischoff FR (2008) Particle-based combinatorial peptide synthesis. CHEMBIOCHEM 10:803–808 Concept article

    Article  Google Scholar 

  • Breitling F, Felgenhauer T, Nesterov A, Stadler V, Bischoff FR (2009) High-density peptide arrays. Mole Biosyst 5:224–234 Review

    Article  CAS  Google Scholar 

  • Chan WC, White PD (2000) Fmoc solid phase peptide synthesis. A practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Dikmans A, Beutling U, Schmeisser E, Thiele S, Frank R (2006) SC2: A novel process for manufacturing multipurpose high-density chemical microarrays QSAR comb. Science 25:1069–1080

    CAS  Google Scholar 

  • Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773

    Article  PubMed  CAS  Google Scholar 

  • Frank R (1992) Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48:9217–9232

    Article  CAS  Google Scholar 

  • Geysen HM, Meloen RH, Barteling SJ (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci USA 81:3998–4002

    Article  PubMed  CAS  Google Scholar 

  • Hilpert K, Hansen G, Wessner H, Küttner G, Welfle K, Seifert M, Höhne W (2001) Anti-c-myc antibody 9E10: epitope key positions and variability characterized using peptide spot synthesis on cellulose. Protein Eng 14:803–806

    Article  PubMed  CAS  Google Scholar 

  • Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH (1991) Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354:84–86

    Article  PubMed  CAS  Google Scholar 

  • Kawagishi Y, Ishida Y, Ishikawa K (1983) (Orient Chemical Ind.), patent application US 4404271A1

    Google Scholar 

  • Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nat Genet 21:20–24

    Article  PubMed  CAS  Google Scholar 

  • Mandal S, Rouillard JM, Srivannavit O, Gulari E (2007) Cytophobic surface modification of microfluidic arrays for in situ parallel peptide synthesis and cell adhesion assays. Biotechnol Prog 23:972–978

    PubMed  CAS  Google Scholar 

  • Merrifield RB (1965) Automated synthesis of peptides. Science 150:178–185 Review

    Article  PubMed  CAS  Google Scholar 

  • Pellois JP, Zhou X, Srivannavit O, Zhou T, Gulari E, Gao X (2002) Individually addressable parallel peptide synthesis on microchips. Nat Biotechnol 20:922–926

    Article  PubMed  CAS  Google Scholar 

  • Prime KL, Whitesides GM (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252:1164–1167

    Article  CAS  Google Scholar 

  • Reineke U, Volkmer-Engert R, Schneider-Mergener J (2001) Applications of peptide arrays prepared by the SPOT-technology. Curr Opin Biotechnol 12:59–64

    Article  PubMed  CAS  Google Scholar 

  • Reineke U, Ivascu C, Schlief M, Landgraf C, Gericke S, Zahn G, Herzel HP, Volkmer-Engert R, Schneider-Mergener J (2002) Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences. J Immunol Methods 267:37–51

    Article  PubMed  CAS  Google Scholar 

  • Slootstra JW, Kuperus D, Plückthun A, Meloen RH (1997) Identification of new tag sequences with differential and selective recognition properties for the anti-FLAG monoclonal antibodies M1, M2 and M5. Mol Divers 2:156–164

    Article  PubMed  CAS  Google Scholar 

  • Stadler V, Beyer M, König K, Nesterov A, Torralba G, Lindenstruth V, Hausmann M, Bischoff FR, Breitling F (2007) Multifunctional CMOS Microchip Coatings for Protein and Peptide Arrays. J. Proteome Res 6:3197–3202

    Article  PubMed  CAS  Google Scholar 

  • Stadler V, Felgenhauer T, Beyer M, Fernandez S, Leibe K, Güttler S, Gröning M, Torralba G, Lindenstruth V, Nesterov A, Block I, Pipkorn R, Poustka A, Bischoff FR, Breitling F (2008a) Combinatorial synthesis of peptide arrays with a laser printer. Angew Chem Int Ed Engl 47:7132–7135

    Article  PubMed  CAS  Google Scholar 

  • Stadler V, Kirmse R, Beyer M, Breitling F, Ludwig T, Bischoff FR (2008b) PEGMA/MMA Copolymer Graftings: Generation, Protein Resistance, and a Hydrophobic Domain. Langmuir 24:8151–8157

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Breitling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Breitling, F., Schirwitz, C., Felgenhauer, T., Block, I., Stadler, V., Bischoff, R. (2010). Epitope Mapping by Printed Peptide Libraries. In: Kontermann, R., Dübel, S. (eds) Antibody Engineering. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01144-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01144-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01143-6

  • Online ISBN: 978-3-642-01144-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics