Skip to main content

Energy-Based RNA Consensus Secondary Structure Prediction in Multiple Sequence Alignments

  • Protocol
  • First Online:
Book cover RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1097))

Abstract

Many biologically important RNA structures are conserved in evolution leading to characteristic mutational patterns. RNAalifold is a widely used program to predict consensus secondary structures in multiple alignments by combining evolutionary information with traditional energy-based RNA folding algorithms. Here we describe the theory and applications of the RNAalifold algorithm. Consensus secondary structure prediction not only leads to significantly more accurate structure models, but it also allows to study structural conservation of functional RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Washietl S, Pedersen JS, Korbel JO, Stocsits C, Gruber AR, Hackermüller J, Hertel J, Lindemeyer M, Reiche K, Tanzer A, Ucla C, Wyss C, Antonarakis SE, Denoeud F, Lagarde J, Drenkow J, Kapranov P, Gingeras TR, Guigó R, Snyder M, Gerstein MB, Reymond A, Hofacker IL, Stadler PF (2007) Structured RNAs in the ENCODE selected regions of the human genome. Genome Res 17: 852–864. doi:10.1101/gr.5650707

    Google Scholar 

  2. Gardner PP, Giegerich R (2004) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5: 140. doi:10.1186/1471-2105-5-140

    Article  PubMed Central  PubMed  Google Scholar 

  3. Gardner PP, Wilm A, Washietl S (2005) A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res 33: 2433–2439. doi:10.1093/nar/gki541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wilm A, Mainz I, Steger G (2006) An enhanced RNA alignment benchmark for sequence alignment programs. Algorithms Mol Biol 1: 19. doi:10.1186/1748-7188-1-19

    Article  PubMed Central  PubMed  Google Scholar 

  5. Höchsmann M, Voss B, Giegerich R (2004) Pure multiple RNA secondary structure alignments: a progressive profile approach. IEEE/ACM Trans Comput Biol Bioinform 1: 53–62. doi:10.1109/TCBB.2004.11

    Article  PubMed  Google Scholar 

  6. Sankoff D (1985) Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J Appl Math 45: 810–825

    Article  Google Scholar 

  7. Noller HF, Kop J, Wheaton V, Brosius J, Gutell RR, Kopylov AM, Dohme F, Herr W, Stahl DA, Gupta R, Woese CR (1981) Secondary structure model for 23s ribosomal RNA. Nucleic Acids Res 9 (22): 6167–6189. doi:10.1093/nar/9.22.6167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319: 1059–1066. doi:10.1016/S0022-2836(02)00308-X

    Article  CAS  PubMed  Google Scholar 

  9. Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9: 133–148.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9: 474. doi:10.1186/1471-2105-9-474

    Article  PubMed Central  PubMed  Google Scholar 

  11. Klein RJ, Eddy SR (2003) RSEARCH: finding homologs of single structured RNA sequences. BMC Bioinformatics 4: 44. doi:10.1186/1471-2105-4-44

    Article  PubMed Central  PubMed  Google Scholar 

  12. McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29: 1105–1119. doi:10.1002/bip.360290621

    Article  CAS  PubMed  Google Scholar 

  13. Ding Y, Lawrence CE (1999) A bayesian statistical algorithm for RNA secondary structure prediction. Comput Chem 23 (3–4): 387–400.

    Article  CAS  PubMed  Google Scholar 

  14. Ding Y, Chan CY, Lawrence CE (2005) RNA secondary structure prediction by centroids in a boltzmann weighted ensemble. RNA 11 (8): 1157–1166. doi:10.1261/rna.2500605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hofacker IL, Priwitzer B, Stadler PF (2004) Prediction of locally stable RNA secondary structures for genome-wide surveys. Bioinformatics 20: 186–190. doi:10.1093/bioinformatics/btg388

    Article  CAS  PubMed  Google Scholar 

  16. Washietl S, Hofacker IL (2004) Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. J Mol Biol 342: 19–30. doi:10.1016/j.jmb.2004.07.018

    Article  CAS  PubMed  Google Scholar 

  17. Gruber AR, Bernhart SH, Hofacker IL, Washietl S (2008) Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinformatics 9: 122. doi:10.1186/1471-2105-9-122

    Article  PubMed Central  PubMed  Google Scholar 

  18. Gesell T, Washietl S (2008) Dinucleotide controlled null models for comparative RNA gene prediction. BMC Bioinformatics 9: 248. doi:10.1186/1471-2105-9-248

    Article  PubMed Central  PubMed  Google Scholar 

  19. Gruber AR, Findeiß S, Washietl S, Hofacker IL, Stadler PF (2010) RNAz 2.0: improved noncoding RNA detection. Pac Symp Biocomput 15: 69–79

    Google Scholar 

  20. Washietl S (2007) Prediction of structural noncoding RNAs with RNAz. Methods Mol Biol 395: 503–526

    Article  CAS  PubMed  Google Scholar 

  21. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31: 3423–3428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Seemann SE, Gorodkin J, Backofen R (2008) Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments. Nucleic Acids Res 36: 6355–6362. doi:10.1093/nar/gkn544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Do CB, Woods DA, Batzoglou S (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22: e90–e98. doi:10.1093/ bioinformatics/btl246

    Article  CAS  PubMed  Google Scholar 

  24. Lu ZJ, Gloor JW, Mathews DH (2009) Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA 15: 1805–1813. doi:10.1261/rna.1643609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kiryu H, Kin T, Asai K (2007) Robust prediction of consensus secondary structures using averaged base pairing probability matrices. Bioinformatics 23: 434–441. doi:10.1093/bioinformatics/btl636

    Article  CAS  PubMed  Google Scholar 

  26. Hamada M, Kiryu H, Sato K, Mituyama T, Asai K (2009) Prediction of RNA secondary structure using generalized centroid estimators. Bioinformatics 25: 465–473. doi:10.1093/bioinformatics/btn601

    Article  CAS  PubMed  Google Scholar 

  27. Hamada M, Sato K, Asai K (2011) Improving the accuracy of predicting secondary structure for aligned RNA sequences. Nucleic Acids Res 39: 393–402. doi:10.1093/ nar/ gkq792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797. doi:10.1093/nar/gkh340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Stefan Washietl was supported by an Erwin Schrödinger Fellowship of the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung. Stephan H. Bernhart was funded by the Austrian GEN-AU project “Noncoding RNA.” We thank Ivo Hofacker and Benjamin Holmes for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Washietl, S., Bernhart, S.H., Kellis, M. (2014). Energy-Based RNA Consensus Secondary Structure Prediction in Multiple Sequence Alignments. In: Gorodkin, J., Ruzzo, W. (eds) RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods. Methods in Molecular Biology, vol 1097. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-709-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-709-9_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-708-2

  • Online ISBN: 978-1-62703-709-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics