Skip to main content

PRALINE: A Versatile Multiple Sequence Alignment Toolkit

  • Protocol
  • First Online:
Multiple Sequence Alignment Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1079))

Abstract

Profile ALIgNmEnt (PRALINE) is a versatile multiple sequence alignment toolkit. In its main alignment protocol, PRALINE follows the global progressive alignment algorithm. It provides various alignment optimization strategies to address the different situations that call for protein multiple sequence alignment: global profile preprocessing, homology-extended alignment, secondary structure-guided alignment, and transmembrane aware alignment. A number of combinations of these strategies are enabled as well.

PRALINE is accessible via the online server http://www.ibi.vu.nl/programs/PRALINEwww/. The server facilitates extensive visualization possibilities aiding the interpretation of alignments generated, which can be written out in pdf format for publication purposes. PRALINE also allows the sequences in the alignment to be represented in a dendrogram to show their mutual relationships according to the alignment. The chapter ends with a discussion of various issues occurring in multiple sequence alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    PRALINE finds the PDB identifier of a protein by extracting it from the fasta definition line of that protein. For example, these description lines are fine: “>102L_A,” “>102L|A,” and “>102LA”. For any other description line, PDB identifier is not extracted. No description may follow the sequence identifier. Thus “>pdb|102L|A”, “>gi|157829524|pdb|102L|A”, and also “>102L_A ” (note the trailing space) are skipped.

References

  1. Sankoff D, Cedergren RJ (1983) Simultaneous comparison of three or more sequences related by a tree, time warps, string edits and macromolecules. The theory and practice of sequence comparison. Addison-Wesley, Reading, MA, pp 253–263

    Google Scholar 

  2. Hogeweg P, Hesper B (1984) The alignment of sets of sequences and the construction of phyletic trees: an integrated method. J Mol Evol 20:175–186

    Article  PubMed  CAS  Google Scholar 

  3. Feng DF, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25:351–360

    Article  PubMed  CAS  Google Scholar 

  4. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  5. Gotoh O (1996) Significant improvement in accuracy of multiple protein sequence alignments by iterative refinement as assessed by reference to structural alignments. J Mol Biol 264:823–838

    Article  PubMed  CAS  Google Scholar 

  6. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  7. Heringa J (1999) Two strategies for sequence comparison: profile-preprocessed and secondary structure-induced multiple alignment. Comput Chem 23:341–364

    Article  PubMed  CAS  Google Scholar 

  8. Heringa J (2002) Local weighting schemes for protein multiple sequence alignment. Comput Chem 26:459–477

    Article  PubMed  CAS  Google Scholar 

  9. Katoh K, Kuma K, Toh H et al (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  PubMed  CAS  Google Scholar 

  10. Edgar RC, Sjölander K (2004) A comparison of scoring functions for protein sequence profile alignment. Bioinformatics 20:1301–1308

    Article  PubMed  CAS  Google Scholar 

  11. Wang G, Dunbrack RL Jr (2004) Scoring profile-to-profile sequence alignments. Protein Sci 13:1612–1626

    Article  PubMed  CAS  Google Scholar 

  12. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89:10915–10919

    Article  PubMed  CAS  Google Scholar 

  13. Dayhoff MO, Barker WC, Hunt LT (1983) Establishing homologies in protein sequences. Methods Enzymol 91:524–545

    Article  PubMed  CAS  Google Scholar 

  14. Vogt G, Etzold T, Argos P (1995) An assessment of amino acid exchange matrices in aligning protein sequences: the twilight zone revisited. J Mol Biol 249:816–831

    Article  PubMed  CAS  Google Scholar 

  15. Yona G, Brenner SE (2000) Comparison of protein sequences and practical database searching. In: Higgins D, Taylor W (eds) Bioinformatics: sequence, structure, and data-banks. A practical approach. Oxford University Press, New York, pp 167–190

    Google Scholar 

  16. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12:85–94

    Article  PubMed  CAS  Google Scholar 

  17. Yu Y-K, Wootton JC, Altschul SF (2003) The compositional adjustment of amino acid substitution matrices. Proc Natl Acad Sci 100:15688–15693

    Article  PubMed  CAS  Google Scholar 

  18. Simossis VA, Kleinjung J, Heringa J (2005) Homology-extended sequence alignment. Nucleic Acids Res 33:816–824

    Article  PubMed  CAS  Google Scholar 

  19. Sander C, Schneider R (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9:56–68

    Article  PubMed  CAS  Google Scholar 

  20. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    PubMed  CAS  Google Scholar 

  21. Simossis VA, Heringa J (2004) The influence of gapped positions in multiple sequence alignments on secondary structure prediction methods. Comput Biol Chem 28:351–366

    Article  PubMed  CAS  Google Scholar 

  22. Heringa J (2000) Computational methods for protein secondary structure prediction using multiple sequence alignments. Curr Protein Pept Sci 1:273–301

    Article  PubMed  CAS  Google Scholar 

  23. Chung R, Yona G (2004) Protein family comparison using statistical models and predicted structural information. BMC Bioinformatics 5:183

    Article  PubMed  Google Scholar 

  24. Ginalski K, Pas J, Wyrwicz LS et al (2003) ORFeus: Detection of distant homology using sequence profiles and predicted secondary structure. Nucleic Acids Res 31:3804–3807

    Article  PubMed  CAS  Google Scholar 

  25. Söding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960

    Article  PubMed  Google Scholar 

  26. von Ohsen N, Sommer I, Zimmer R et al (2004) Arby: automatic protein structure prediction using profile-profile alignment and confidence measures. Bioinformatics 20:2228–2235

    Article  Google Scholar 

  27. Ginalski K, von Grotthuss M, Grishin NV et al (2004) Detecting distant homology with Meta-BASIC. Nucleic Acids Res 32:W576–W581

    Article  PubMed  CAS  Google Scholar 

  28. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  PubMed  CAS  Google Scholar 

  29. Pollastri G, Przybylski D, Rost B et al (2002) Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47:228–235

    Article  PubMed  CAS  Google Scholar 

  30. Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21:1719–1720

    Article  PubMed  CAS  Google Scholar 

  31. Lin K, Simossis VA, Taylor WR et al (2005) A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 21:152–159

    Article  PubMed  CAS  Google Scholar 

  32. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  33. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  34. Lüthy R, McLachlan AD, Eisenberg D (1991) Secondary structure-based profiles: use of structure-conserving scoring tables in searching protein sequence databases for structural similarities. Proteins 10:229–239

    Article  PubMed  Google Scholar 

  35. Jones DT, Taylor WR, Thornton JM (1994) A mutation data matrix for transmembrane proteins. FEBS Lett 339:269–275

    Article  PubMed  CAS  Google Scholar 

  36. Shafrir Y, Guy HR (2004) STAM: simple transmembrane alignment method. Bioinformatics 20:758–769

    Article  PubMed  CAS  Google Scholar 

  37. Pirovano W, Feenstra KA, Heringa J (2008) PRALINETM: a strategy for improved multiple alignment of transmembrane proteins. Bioinformatics 24:492–497

    Article  PubMed  CAS  Google Scholar 

  38. Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    Article  PubMed  Google Scholar 

  39. Krogh A, Larsson B, von Heijne G et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  40. Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  PubMed  Google Scholar 

  41. Ng PC, Henikoff JG, Henikoff S (2000) PHAT: a transmembrane-specific substitution matrix. Bioinformatics 16:760–766

    Article  PubMed  CAS  Google Scholar 

  42. Hirosawa M, Totoki Y, Hoshida M et al (1995) Comprehensive study on iterative algorithms of multiple sequence alignment. Comput Appl Biosci 11:13–18

    PubMed  CAS  Google Scholar 

  43. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed  Google Scholar 

  44. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  45. Pearson WR (2000) Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol 132:185–219

    PubMed  CAS  Google Scholar 

  46. Gonnet GH, Cohen MA, Benner SA (1992) Exhaustive matching of the entire protein sequence database. Science 256:1443–1445

    Article  PubMed  CAS  Google Scholar 

  47. Thompson JD, Koehl P, Ripp R et al (2005) BAliBASE 3.0: latest developments of the multiple sequence alignment benchmark. Proteins 61:127–136

    Article  PubMed  CAS  Google Scholar 

  48. Sammeth M, Heringa J (2006) Global multiple-sequence alignment with repeats. Proteins 64:263–274

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bawono, P., Heringa, J. (2014). PRALINE: A Versatile Multiple Sequence Alignment Toolkit. In: Russell, D. (eds) Multiple Sequence Alignment Methods. Methods in Molecular Biology, vol 1079. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-646-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-646-7_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-645-0

  • Online ISBN: 978-1-62703-646-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics