Skip to main content

Antigen-Specific Human Monoclonal Antibodies from Transgenic Mice

  • Protocol
  • First Online:
Human Monoclonal Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1060))

Abstract

Due to the difficulties found when generating fully human monoclonal antibodies (mAbs) by the traditional method, several efforts have attempted to overcome these problems, with varying levels of success. One approach has been the development of transgenic mice carrying immunoglobulin (Ig) genes in germ line configuration. The engineered mouse genome can undergo productive rearrangement in the B cell population, with the generation of mouse B lymphocytes expressing human Ig (hIg) chains. To avoid the expression of mouse heavy or light chains, the endogenous mouse Ig (mIg) loci must be silenced by gene-targeting techniques. Subsequently, to obtain antigen-specific mAbs, conventional immunization protocols can be followed and the mAb technique used (fusion of activated B cells with mouse myeloma cells, screening, cloning, freezing, and testing) with these animals expressing human Ig genes. This chapter describes the type of transgenic knockout mice generated for various research groups, provides examples of human mAbs developed by research groups and companies, and includes protocols of immunization, generation, production, and purification of human mAbs from such mice. In addition, it also addresses the problems detected, and includes some of the methods that can be used to analyze functional activities with human mAbs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    PubMed  Google Scholar 

  2. Miller RA, Maloney DG, Warnke R, Levy R (1982) Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med 306:517–522

    CAS  PubMed  Google Scholar 

  3. Stas P, Pletinckx J, Gansemans Y, Lasters I (2009) Immunogenicity assessment of antibody therapeutics. In: Melvyn Little ATA (ed) Recombinant antibodies for immunotherapy. Cambridge University Press, Cambridge

    Google Scholar 

  4. Benny KC Lo (2005) Protein therapeutics: mouse, humanized and human antibodies. In: Walker JM, Rapley R (eds) Medical methods handbook. Springer, Berlin, pp 429–446

    Google Scholar 

  5. Arruebo M, Vilaboa N, Sáez GB, Lambea J, Tres A, Valladares M, González-Fernández A (2011) Assessment of the evolution of cancer treatment therapies. Cancers 3:3279–3330

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Elbakri A, Nelson PN, Abu Odeh RO (2010) The state of antibody therapy. Hum Immunol 71:1243–1250

    CAS  PubMed  Google Scholar 

  7. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJT (2010) The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9:325–338

    CAS  PubMed  Google Scholar 

  8. Chester KA, Begent RH, Robson L, Keep P, Pedley RB, Boden JA et al (1994) Phage libraries for generation of clinically useful antibodies. Lancet 343:455–456

    CAS  PubMed  Google Scholar 

  9. Lonberg N (2008) Fully human antibodies from transgenic mouse and phage display platforms. Curr Opin Immunol 20:450–459

    CAS  PubMed  Google Scholar 

  10. Bratkovic T (2010) Progress in phage display: evolution of the technique and its application. Cell Mol Life Sci 67:749–767

    CAS  PubMed  Google Scholar 

  11. Hamadeh RM, Jarvis GA, Galili U, Mandrell RE, Zhou P, Griffiss JM (1992) Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J Clin Invest 89:1223–1235

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sheeley D, Merrill B, Taylor L (1997) Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal Biochem 247:102–110

    CAS  PubMed  Google Scholar 

  13. Borrebaeck CK, Malmborg AC, Ohlin M (1993) Does endogenous glycosylation prevent the use of mouse monoclonal antibodies as cancer therapeutics? Immunol Today 14:477–479

    CAS  PubMed  Google Scholar 

  14. Kamel-Reid S, Letarte M, Doedens M, Greaves A, Murdoch B, Grunberger T et al (1991) Bone marrow from children in relapse with pre-B acute lymphoblastic leukemia proliferates and disseminates rapidly in scid mice. Blood 78:2973–2981

    CAS  PubMed  Google Scholar 

  15. McCune JM (1996) Development and applications of the SCID-hu mouse model. Semin Immunol 8:187–196

    CAS  PubMed  Google Scholar 

  16. Eren R, Lubin I, Terkieltaub D, Ben-Moshe O, Zauberman A, Uhlmann R et al (1998) Human monoclonal antibodies specific to hepatitis B virus generated in a human/mouse radiation chimera: the Trimera system. Immunology 93:154–161

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Storb U (1987) Transgenic mice with immunoglobulin genes. Annu Rev Immunol 5:151–174

    CAS  PubMed  Google Scholar 

  18. Brinster RL, Ritchie KA, Hammer RE, O’Brien RL, Arp B, Storb U (1983) Expression of a microinjected immunoglobulin gene in the spleen of transgenic mice. Nature 306:332–336

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rusconi S, Köhler G (1985) Transmission and expression of a specific pair of rearranged immunoglobulin mu and kappa genes in a transgenic mouse line. Nature 314:330–334

    CAS  PubMed  Google Scholar 

  20. Grosschedl R, Weaver D, Baltimore D, Costantini F (1984) Introduction of a mu immunoglobulin gene into the mouse germ line: specific expression in lymphoid cells and synthesis of functional antibody. Cell 38:647–658

    CAS  PubMed  Google Scholar 

  21. González-Fernández A, Milstein C (1993) Analysis of somatic hypermutation in mouse Peyer’s patches using immunoglobulin kappa light-chain transgenes. Proc Natl Acad Sci USA 90:9862–9866

    PubMed  Google Scholar 

  22. Betz AG, Milstein C, González-Fernández A, Pannell R, Larson T, Neuberger MS (1994) Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell 77:239–248

    CAS  PubMed  Google Scholar 

  23. Yélamos J, Klix N, Goyenechea B, Lozano F, Chui Y, González F et al (1995) Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 376:225–229

    PubMed  Google Scholar 

  24. Wagner S, Popov A, Davies S, Xian J, Neuberger M, Brüggemann M (1994) The diversity of antigen-specific monoclonal antibodies from transgenic mice bearing human immunoglobulin gene miniloci. Eur J Immunol 24:2672–2681

    CAS  PubMed  Google Scholar 

  25. Brüggemann M, Taussig MJ (1997) Production of human antibody repertoires in transgenic mice. Curr Opin Biotechnol 8:455–458

    PubMed  Google Scholar 

  26. Jakobovits A, Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM et al (1995) Production of antigen-specific human antibodies from mice engineered with human heavy and light chain YACs. Ann N Y Acad Sci 764:525–535

    CAS  PubMed  Google Scholar 

  27. Brüggemann M (2004) Chapter 34: Human monoclonal antibodies from translocus mice. In: Honjo T, Neuberger MS (eds) Molecular biology of B cell, 1st edn. Academic, New york

    Google Scholar 

  28. Brüggemann M, Caskey HM, Teale C, Waldmann H, Williams GT, Surani MA et al (1989) A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc Natl Acad Sci USA 86:6709–6713

    PubMed  Google Scholar 

  29. Kitamura D, Roes J, Kühn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350:423–426

    CAS  PubMed  Google Scholar 

  30. Chen J, Trounstine M, Alt FW, Young F, Kurahara C, Loring JF et al (1993) Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int Immunol 5:647–656

    CAS  PubMed  Google Scholar 

  31. Green LL, Jakobovits A (1998) Regulation of B cell development by variable gene complexity in mice reconstituted with human immunoglobulin yeast artificial chromosomes. J Exp Med 188:483–495

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zou X, Piper T, Smith J, Allen N, Xian J, Brüggemann M (2003) Block in development at the pre-B-II to immature B cell stage in mice without Ig kappa and Ig lambda light chain. J Immunol 170:1354–1361

    CAS  PubMed  Google Scholar 

  33. Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM, Mendez MJ et al (1994) Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 7:13–21

    CAS  PubMed  Google Scholar 

  34. Pruzina S, Williams G, Kaneva G, Davies S, Martín-López A, Brüggemann M et al (2011) Human monoclonal antibodies to HIV-1 gp140 from mice bearing YAC-based human immunoglobulin transloci. Protein Eng Des Sel 24:791–799

    CAS  PubMed  Google Scholar 

  35. Magadán S, Valladares M, Suarez E, Sanjuán I, Molina A, Ayling C et al (2002) Production of antigen-specific human monoclonal antibodies: comparison of mice carrying IgH/kappa or IgH/kappa/lambda transloci. Biotechniques 33:680–684

    PubMed  Google Scholar 

  36. Molina A, Valladares M, Sancho D, Viedma F, Sanjuan I, Madrid F et al (2003) The use of transgenic mice for the production of a human monoclonal antibody specific for human CD69 antigen. J Immunol Methods 2823:147–158

    Google Scholar 

  37. Suárez E, Magadán S, Sanjuán I, Valladares M, Molina A, Gambón F et al (2006) Rearrangement of only one human IGHV gene is sufficient to generate a wide repertoire of antigen specific antibody responses in transgenic mice. Mol Immunol 43:1827–1835

    PubMed  Google Scholar 

  38. Díaz B, Sanjuan I, Gambón F, Loureiro C, Magadán S, González-Fernández A (2009) Generation of a human IgM monoclonal antibody directed against HLA class II molecules: a potential agent in the treatment of haematological malignancies. Cancer Immunol Immunother 58:351–360

    PubMed  Google Scholar 

  39. Magadán S, Sanjuán I, Valladares M et al. (2004) A new potential therapeutic agent against B cell malignancies. 12th annual international congress of immunology/4th annual conference of the Federation-of-Clinical-Immunology-Societies (FOCIS), Montreal, Canada, 2004. In: Medimond international proceedings, pp 409–422

    Google Scholar 

  40. Nicholson I, Zou X, Popov A, Cook G, Corps E, Humphries S et al (1999) Antibody repertoires of four- and five-feature translocus mice carrying human immunoglobulin heavy chain and kappa and lambda light chain yeast artificial chromosomes. J Immunol 163:6898–6906

    CAS  PubMed  Google Scholar 

  41. Xu J, Davis M (2000) Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13:37–45

    CAS  PubMed  Google Scholar 

  42. Ishida I, Tomizuka K, Yoshida H, Tahara T, Takahashi N, Ohguma A et al (2002) Production of human monoclonal and polyclonal antibodies in TransChromo animals. Cloning Stem Cells 4:91–102

    CAS  PubMed  Google Scholar 

  43. Green L (1999) Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J Immunol Methods 231:11–23

    CAS  PubMed  Google Scholar 

  44. Ni J (2009) New technologies for the generation of human monoclonal antibody. Trends Biopharm Ind 5:3–12

    Google Scholar 

  45. Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352

    CAS  PubMed  Google Scholar 

  46. Galfrè G, Howe S, Milstein C, Butcher G, Howard J (1977) Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature 266:550–552

    PubMed  Google Scholar 

  47. Galfrè G, Milstein C (1981) Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 3:3–46

    Google Scholar 

  48. Lefranc M (2003) IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 31:307–310

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dewar V, Voet P, Denamur F, Smal J (2005) Industrial implementation of in vitro production of monoclonal antibodies. ILAR J 46:307–313

    CAS  PubMed  Google Scholar 

  50. Nilson B, Lögdberg L, Kastern W, Björck L, Akerström B (1993) Purification of antibodies using protein L-binding framework structures in the light chain variable domain. J Immunol Methods 164:33–40

    CAS  PubMed  Google Scholar 

  51. Zou X, Xian J, Davies N, Popov A, Brüggemann M (1996) Dominant expression of a 1.3 Mb human Ig kappa locus replacing mouse light chain production. FASEB J 10:1227–1232

    CAS  PubMed  Google Scholar 

  52. Taylor L, Carmack C, Schramm S, Mashayekh R, Higgins K, Kuo C et al (1992) A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins. Nucleic Acids Res 20:6287–6295

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lonberg N, Taylor LD, Harding FA, Trounstine M, Higgins KM, Schramm SR et al (1994) Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368:856–859

    CAS  PubMed  Google Scholar 

  54. Brüggemann M, Neuberger MS (1996) Strategies for expressing human antibody repertoires in transgenic mice. Immunol Today 17:391–397

    PubMed  Google Scholar 

  55. Wagner S, Gross G, Cook G, Davies S, Neuberger M (1996) Antibody expression from the core region of the human IgH locus reconstructed in transgenic mice using bacteriophage P1 clones. Genomics 35:405–414

    CAS  PubMed  Google Scholar 

  56. Mendez M, Green L, Corvalan J, Jia X, Maynard-Currie C, Yang X et al (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15:146–156

    CAS  PubMed  Google Scholar 

  57. Jakobovits A, PubMed P (1998) Production and selection of antigen-specific fully human monoclonal antibodies from mice engineered with human Ig loci. Adv Drug Deliv Rev 1:1–2

    Google Scholar 

  58. Tomizuka K, Yoshida H, Uejima H, Kugoh H, Sato K, Ohguma A et al (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 16:133–143

    CAS  PubMed  Google Scholar 

  59. Davies NP, Rosewell IR, Richardson JC, Cook GP, Neuberger MS, Brownstein BH et al (1993) Creation of mice expressing human antibody light chains by introduction of a yeast artificial chromosome containing the core region of the human immunoglobulin kappa locus. Biotechnology (N Y) 11:911–914

    CAS  Google Scholar 

  60. Fishwild DM, O’Donnell SL, Bengoechea T, Hudson DV, Harding F, Bernhard SL et al (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14:845–851

    CAS  PubMed  Google Scholar 

  61. Popov A, Zou X, Xian J, Nicholson I, Brüggemann M (1999) A human immunoglobulin lambda locus is similarly well expressed in mice and humans. J Exp Med 189:1611–1620

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nitschke L, Kosco M, Köhler G, Lamers M (1993) Immunoglobulin D-deficient mice can mount normal immune responses to thymus-independent and -dependent antigens. Proc Natl Acad Sci USA 90:1887–1891

    CAS  PubMed  Google Scholar 

  63. Oettgen H, Martin T, Wynshaw-Boris A, Deng C, Drazen J, Leder P (1994) Active anaphylaxis in IgE-deficient mice. Nature 370:367–370

    CAS  PubMed  Google Scholar 

  64. Erlandsson L, Andersson K, Sigvardsson M, Lycke N, Leanderson T (1998) Mice with an inactivated joining chain locus have perturbed IgM secretion. Eur J Immunol 28:2355–2365

    CAS  PubMed  Google Scholar 

  65. Zou Y, Takeda S, Rajewsky K (1993) Gene targeting in the Ig kappa locus: efficient generation of lambda chain-expressing B cells, independent of gene rearrangements in Ig kappa. EMBO J 12:811–820

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Takeda S, Zou Y, Bluethmann H, Kitamura D, Muller U, Rajewsky K (1993) Deletion of the immunoglobulin kappa chain intron enhancer abolishes kappa chain gene rearrangement in cis but not lambda chain gene rearrangement in trans. EMBO J 12:2329–2336

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen J, Trounstine M, Kurahara C, Young F, Kuo CC, Xu Y et al (1993) B cell development in mice that lack one or both immunoglobulin kappa light chain genes. EMBO J 12:821–830

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sanchez P, Drapier A, Cohen-Tannoudji M, Colucci E, Babinet C, Cazenave P (1994) Compartmentalization of lambda subtype expression in the B cell repertoire of mice with a disrupted or normal C kappa gene segment. Int Immunol 6:711–719

    CAS  PubMed  Google Scholar 

  69. Zou X, Xian J, Popov A, Rosewell I, Müller M, Brüggemann M (1995) Subtle differences in antibody responses and hypermutation of lambda light chains in mice with a disrupted chi constant region. Eur J Immunol 25:2154–2162

    CAS  PubMed  Google Scholar 

  70. Tomizuka K, Shinohara T, Yoshida H, Uejima H, Ohguma A, Tanaka S et al (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci USA 97:722–727

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mompó, S.M., González-Fernández, Á. (2014). Antigen-Specific Human Monoclonal Antibodies from Transgenic Mice. In: Steinitz, M. (eds) Human Monoclonal Antibodies. Methods in Molecular Biology, vol 1060. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-62703-586-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-586-6_13

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-62703-585-9

  • Online ISBN: 978-1-62703-586-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics