Skip to main content
Book cover

Chemokines pp 145–159Cite as

Zebrafish as a Model to Study Chemokine Function

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1013))

Abstract

Zebrafish have emerged as a powerful model organism to study embryo morphogenesis. Due to their optical clarity, they are uniquely suited for time-lapse imaging studies, providing insights into the dynamic processes underlying tissue formation and cell migration. These studies have been tremendously facilitated by the availability of transgenic zebrafish lines, labelling distinct embryonic structures, individual cells, or even subcellular structures, such as the nucleus. Zebrafish studies have revealed that the migration of several different cell types in the embryo is controlled by chemokines, small vertebrate-specific proteins. Here, we report methods to analyze the expression pattern of a given chemokine and its receptor in transgenic zebrafish using fluorescent in situ hybridization in combination with an anti-green fluorescent protein (GFP) antibody staining. We furthermore illustrate how to image migrating cell populations using time-lapse microscopy in double-transgenic embryos. We show how to investigate cell number and direction of migration by using a nuclear-localized GFP. The combination of this transgene with a membrane-targeted red fluorescent protein allows for the simultaneous determination of changes in cell shape, such as the formation of filopodial extensions. We exemplify this by describing how a mutation in the chemokine receptor cxcr4a affects endothelial cell migration and blood vessel formation. Finally, we provide a method to perform fluorescent angiography to monitor blood vessel perfusion in chemokine receptor mutants.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dynam 203:253–310

    Article  CAS  Google Scholar 

  2. Rieger S, Wang F, Sagasti A (2011) Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension. Genesis 49:534–545

    Article  PubMed  Google Scholar 

  3. Petroll WM, Jester JV, Cavanagh HD (1994) In-vivo confocal imaging: general-principles and applications. Scanning 16:131–149

    PubMed  CAS  Google Scholar 

  4. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  PubMed  CAS  Google Scholar 

  5. Kawakami K, Koga A, Hori H, Shima A (1998) Excision of the Tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene 225:17–22

    Article  PubMed  CAS  Google Scholar 

  6. Bussmann J, Wolfe SA, Siekmann AF (2011) Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling. Development 138:1717–1726

    Article  PubMed  CAS  Google Scholar 

  7. Meng XD, Noyes MB, Zhu LHJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701

    Article  PubMed  CAS  Google Scholar 

  8. Winkler S, Gscheidel N, Brand M (2011) Mutant generation in vertebrate model organisms by TILLING. Methods Mol Biol 770:475–504

    Article  PubMed  Google Scholar 

  9. Esche C, Stellato C, Beck LA (2005) Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 125:615–628

    Article  PubMed  CAS  Google Scholar 

  10. Raz E, Mahabaleshwar H (2009) Chemokine signaling in embryonic cell migration: a fisheye view. Development 136:1223–1229

    Article  PubMed  CAS  Google Scholar 

  11. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S, Kishimoto T, Nagasawa T (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393:591–594

    Article  PubMed  CAS  Google Scholar 

  12. Lieberam I, Agalliu D, Nagasawa T, Ericson J, Jessell TM (2005) A Cxcl12-Cxcr4 chemokine signaling pathway defines the initial trajectory of mammalian motor axons. Neuron 47:667–679

    Article  PubMed  CAS  Google Scholar 

  13. Kiefer F, Siekmann AF (2011) The role of chemokines and their receptors in angiogenesis. Cell Mol Life Sci 68:2811–2830

    Article  PubMed  CAS  Google Scholar 

  14. Chong SW, Emelyanov A, Gong ZY, Korzh V (2001) Expression pattern of two zebrafish genes, cxcr4a and cxcr4b. Mech Develop 109:347–354

    Article  CAS  Google Scholar 

  15. Siekmann AF, Standley C, Fogarty KE, Wolfe SA, Lawson ND (2009) Chemokine signaling guides regional patterning of the first embryonic artery. Genes Dev 23:2272–2277

    Article  PubMed  CAS  Google Scholar 

  16. Nair S, Schilling TF (2008) Chemokine signaling controls endodermal migration during zebrafish gastrulation. Science 322:89–92

    Article  PubMed  CAS  Google Scholar 

  17. Doitsidou M, Reichman-Fried M, Stebler J, Koprunner M, Dorries J, Meyer D, Esguerra CV, Leung T, Raz E (2002) Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111:647–659

    Article  PubMed  CAS  Google Scholar 

  18. Knaut H, Werz C, Geisler R, Nusslein-Volhard C, Consortium, T. S. (2003) A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature 421:279–282

    Article  PubMed  CAS  Google Scholar 

  19. Miyasaka N, Knaut H, Yoshihara Y (2007) Cxcl12/Cxcr4 chemokine signaling is required for placode assembly and sensory axon pathfinding in the zebrafish olfactory system. Development 134:2459–2468

    Article  PubMed  CAS  Google Scholar 

  20. Julich D, Hwee Lim C, Round J, Nicolaije C, Schroeder J, Davies A, Geisler R, Lewis J, Jiang YJ, Holley SA (2005) Beamter/deltaC and the role of Notch ligands in the zebrafish somite segmentation, hindbrain neurogenesis and hypochord differentiation. Dev Biol 286:391–404

    Article  PubMed  Google Scholar 

  21. Clay H, Ramakrishnan L (2005) Multiplex fluorescent in situ hybridization in zebrafish embryos using tyramide signal amplification. Zebrafish 2:105–111

    Article  PubMed  CAS  Google Scholar 

  22. Hogan BM, Bos FL, Bussmann J, Witte M, Chi NC, Duckers HJ, Schulte-Merker S (2009) Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat Genet 41:396–398

    Article  PubMed  CAS  Google Scholar 

  23. Jinn SW, Beisl D, Mitchell T, Chen JN, Stainier DYR (2005) Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132:5199–5209

    Article  Google Scholar 

  24. Fujita M, Cha YR, Pham VN, Sakurai A, Roman BL, Gutkind JS, Weinstein BM (2011) Assembly and patterning of the vascular network of the vertebrate hindbrain. Development 138:1705–1715

    Article  PubMed  CAS  Google Scholar 

  25. Westerfield M (1993) The zebrafish book. University of Oregon Press, Eugene, OR

    Google Scholar 

Download references

Acknowledgements

We would like to thank Wade William Sugden for critically reading the manuscript. This work was funded by the Max Planck Society, a Deutsche Forschungsgemeinschaft (DFG) grant (SI-1374/3-1), and an ERC starting grant (260794-zebrafishAngio) to AFS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kochhan, E., Siekmann, A.F. (2013). Zebrafish as a Model to Study Chemokine Function. In: Cardona, A., Ubogu, E. (eds) Chemokines. Methods in Molecular Biology, vol 1013. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-426-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-426-5_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-425-8

  • Online ISBN: 978-1-62703-426-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics