Skip to main content

Transcriptome Analysis Using RNA-Seq

  • Protocol
  • First Online:
Malaria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 923))

Abstract

Transcriptome analysis by next-generation sequencing (RNA-seq) allows investigation of a transcriptome at unsurpassed resolution. One major benefit is that RNA-seq is independent of a priori knowledge on the sequence under investigation, thereby also allowing analysis of poorly characterized Plasmodium species. Here we provide a detailed protocol for RNA isolation and fragmentation, ribosomal RNA depletion, and cDNA synthesis that enables the preparation of a sequencing library from 1 to 2 μg of total RNA. Although we focus our discussion on the quantitative measurement of gene expression, this protocol is suited for many applications of RNA-seq and allows analysis of most RNA species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  2. Shendure J et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732

    Article  PubMed  CAS  Google Scholar 

  3. Mortazavi A et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  4. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  PubMed  CAS  Google Scholar 

  5. Shendure J (2008) The beginning of the end for microarrays. Nat Methods 5:585–587

    Article  PubMed  CAS  Google Scholar 

  6. Oshlack A et al (2010) From RNA-seq reads to differential expression results. Genome Biol 11:220

    Article  PubMed  CAS  Google Scholar 

  7. Parkinson J, Blaxter M (2009) Expressed sequence tags: an overview. Methods Mol Biol 533:1–12

    Article  PubMed  CAS  Google Scholar 

  8. Velculescu VE et al (2000) Analysing uncharted transcriptomes with SAGE. Trends Genet 16:423–425

    Article  PubMed  CAS  Google Scholar 

  9. Bartfai R et al (2010) H2A.Z demarcates intergenic regions of the Plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLoS Pathog 6:e1001223

    Article  PubMed  CAS  Google Scholar 

  10. Otto TD et al (2010) New insights into the blood-stage transcriptome of Plasmodium ­falciparum using RNA-Seq. Mol Microbiol 76:12–24

    Article  PubMed  CAS  Google Scholar 

  11. Vignali M et al (2011) NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children. J Clin Invest 121:1119–1129

    Article  PubMed  CAS  Google Scholar 

  12. Sorber K et al (2011) RNA-Seq analysis of splicing in Plasmodium falciparum uncovers new splice junctions, alternative splicing and splicing of antisense transcripts. Nucleic Acids Res 39:3820–3835

    Article  PubMed  CAS  Google Scholar 

  13. Plessy C et al (2010) Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nat Methods 7:528–534

    Article  PubMed  CAS  Google Scholar 

  14. Shepard PJ et al (2011) Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17:761–772

    Article  PubMed  CAS  Google Scholar 

  15. Tuda J et al (2011) Full-parasites: database of full-length cDNAs of apicomplexa parasites, 2010 update. Nucleic Acids Res 39:D625–D631

    Article  PubMed  Google Scholar 

  16. Mamanova L et al (2010) FRT-seq: amplification-free, strand-specific transcriptome sequencing. Nat Methods 7:130–132

    Article  PubMed  CAS  Google Scholar 

  17. Ponting CP, Belgard TG (2011) Transcribed dark matter: meaning or myth? Hum Mol Genet 19:R162–R168

    Article  Google Scholar 

  18. Eipper-Mains JE et al (2011) microRNA-Seq reveals cocaine-regulated expression of striatal microRNAs. RNA 17:1529–1543

    Article  PubMed  CAS  Google Scholar 

  19. Hoeijmakers WA et al (2011) Linear amplification for deep sequencing. Nat Protoc 6:1026–1036

    Article  PubMed  CAS  Google Scholar 

  20. Voss T (2002) Extraction and purification of Plasmodium total RNA. Methods Mol Med 72:151–157

    PubMed  CAS  Google Scholar 

  21. Le Roch KG et al (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:1503–1508

    Article  PubMed  Google Scholar 

  22. Sacci JB Jr et al (2002) Laser capture microdissection and molecular analysis of Plasmodium yoelii liver-stage parasites. Mol Biochem Parasitol 119:285–289

    Article  PubMed  CAS  Google Scholar 

  23. Jacobsen N et al (2011) Efficient poly(A)  +  RNA selection using LNA oligo(T) capture. Methods Mol Biol 703:43–51

    Article  PubMed  CAS  Google Scholar 

  24. Cui P et al (2010) A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing. Genomics 96:259–265

    Article  PubMed  CAS  Google Scholar 

  25. Armour CD et al (2009) Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nat Methods 6:647–649

    Article  PubMed  CAS  Google Scholar 

  26. Bogdanova EA et al (2009) DSN depletion is a simple method to remove selected transcripts from cDNA populations. Mol Biotechnol 41:247–253

    Article  PubMed  CAS  Google Scholar 

  27. Wang Z et al (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  28. Goren A et al (2010) Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nat Methods 7:47–49

    Article  PubMed  CAS  Google Scholar 

  29. Hillier LW et al (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 5:183–188

    Article  PubMed  CAS  Google Scholar 

  30. Kozarewa I et al (2009) Amplification-free Illumina sequencing-library preparation ­facilitates improved mapping and assembly of (G  +  C)-biased genomes. Nat Methods 6:291–295

    Article  PubMed  CAS  Google Scholar 

  31. Aird D et al (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12:R18

    Article  PubMed  CAS  Google Scholar 

  32. Lopez-Barragan MJ et al (2011) Effect of PCR extension temperature on high-throughput sequencing. Mol Biochem Parasitol 176:64–67

    Article  PubMed  CAS  Google Scholar 

  33. Oyola SO et al (2012) BMC Genomics 13:1

    Article  PubMed  CAS  Google Scholar 

  34. Lefrancois P et al (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10:37

    Article  PubMed  Google Scholar 

  35. Garber M et al (2011) Computational ­methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8:469–477

    Article  PubMed  CAS  Google Scholar 

  36. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed  CAS  Google Scholar 

  37. Ning Z et al (2001) SSAHA: a fast search method for large DNA databases. Genome Res 11:1725–1729

    Article  PubMed  CAS  Google Scholar 

  38. Rutherford K et al (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Article  PubMed  CAS  Google Scholar 

  39. Illumina (2010) DSN normalization: application of duplex-specific thermostable nuclease (DSN) to normalize RNA samples for Illumina sequencing. Application Note: RNA analysis

    Google Scholar 

  40. Aurrecoechea C et al (2009) PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 37:D539–D543

    Article  PubMed  CAS  Google Scholar 

  41. Hertz-Fowler C et al (2004) GeneDB: a resource for prokaryotic and eukaryotic organisms. Nucleic Acids Res 32:D339–D343

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these protocols has received funding from the Netherlands Organization for Scientific Research (ZonMw/NGI Horizon 93511023; NWO Toptalent 021.001.011) and the European Community (EVIMalaR EU-FP7_242095; ATLAS EU-FP7_221952). We would like to thank our colleagues Marjolein van Sluis, Maarten van der Velden, Arne Smits, Ulrike Jacobi, Hendrik Marks, Yan Tan, Eva Janssen-Megens, Adriana Salcedo-Amaya, and Kees-Jan Françoijs for valuable discussions and/or involvement in the development of this protocol. Finally, we would like to thank PlasmoDB (40) and GeneDB (41) for providing genomic resources for Plasmodium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik G. Stunnenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hoeijmakers, W.A.M., Bártfai, R., Stunnenberg, H.G. (2012). Transcriptome Analysis Using RNA-Seq. In: Ménard, R. (eds) Malaria. Methods in Molecular Biology, vol 923. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-026-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-026-7_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-025-0

  • Online ISBN: 978-1-62703-026-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics