Skip to main content

Two-Photon Imaging of Population Activity with Genetically Encoded Calcium Indicators in Living Flies

  • Protocol
  • First Online:
Book cover Genetically Encoded Functional Indicators

Part of the book series: Neuromethods ((NM,volume 72))

  • 830 Accesses

Abstract

Genetically encoded calcium indicators make it possible to track neural activity on a population-wide level. Here we describe a preparation that enables two-photon imaging of neural activity in an essentially intact fly. We present strategies to minimize motion of the brain, both in preparation technique and in apparatus design. We discuss key variables for reducing the problems of photobleaching and phototoxicity in order to collect high quality imaging data. Finally, we discuss approaches to analyze the large quantities of data that can now be readily acquired using the latest generation of genetically encoded calcium indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    Article  PubMed  CAS  Google Scholar 

  2. Su C-Y, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells, and circuits. Cell 139:45–59

    Article  PubMed  CAS  Google Scholar 

  3. Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316

    Article  PubMed  CAS  Google Scholar 

  4. Reiff DF, Ihring A, Guerrero G, Isacoff EY, Joesch M, Nakai J, Borst A (2005) In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 25:4766–4778

    Article  PubMed  CAS  Google Scholar 

  5. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  PubMed  CAS  Google Scholar 

  6. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  PubMed  CAS  Google Scholar 

  7. Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hübener M, Griesbeck O (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811

    Article  PubMed  CAS  Google Scholar 

  8. Brand AH, Perrion N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  9. Lai S-L, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709

    Article  PubMed  CAS  Google Scholar 

  10. Potter CJ, Tasic B, Russler EV, Liang L, Luo L (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548

    Article  PubMed  CAS  Google Scholar 

  11. Mank M, Griesbeck O (2008) Genetically encoded calcium indicators. Chem Rev 108:1550–1564

    Article  PubMed  CAS  Google Scholar 

  12. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324

    Article  PubMed  CAS  Google Scholar 

  13. Davis RL (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28:275–302

    Article  PubMed  CAS  Google Scholar 

  14. Keene A, Waddell S (2007) Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci 8:341–354

    Article  PubMed  CAS  Google Scholar 

  15. Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359–365

    Article  PubMed  CAS  Google Scholar 

  16. Turner GC, Bazhenov M, Laurent G (2008) Olfactory representations by Drosophila mushroom body neurons. J Neurophysiol 99:734–746

    Article  PubMed  Google Scholar 

  17. Kanerva P (1988) Sparse distributed memory. MIT Press, Cambridge, MA

    Google Scholar 

  18. Marr D (1969) A theory of cerebellar cortex. J Physiol (Lond) 202:437–470

    CAS  Google Scholar 

  19. Yuste R (2005) Imaging in neuroscience and development: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  20. Grewe BF, Helmchen F (2009) Optical probing of neuronal ensemble activity. Curr Opin Neurobiol 19:520–529

    Article  PubMed  CAS  Google Scholar 

  21. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  PubMed  CAS  Google Scholar 

  22. Oertner TG, Single S, Borst A (1999) Separation of voltage- and ligand-gated calcium influx in locust neurons by optical imaging. Neurosci Lett 274:95–98

    Article  PubMed  CAS  Google Scholar 

  23. Single S, Borst A (2002) Different mechanisms of calcium entry within different dendritic compartments. J Neurophysiol 87:1616–1624

    PubMed  CAS  Google Scholar 

  24. Wang Y, Wright NJ, Guo H, Xie Z, Svoboda K, Malinow R, Smith DP, Zhong Y (2001) Genetic manipulation of the odor-evoked distributed neural activity in the Drosophila mushroom body. Neuron 29:267–276

    Article  PubMed  CAS  Google Scholar 

  25. Wang Y, Guo H-F, Pologruto TA, Hannan F, Hakker I, Svoboda K, Zhong Y (2004) Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. J Neurosci 24:6507–6514

    Article  PubMed  CAS  Google Scholar 

  26. Jayaraman V, Laurent G (2007) Evaluating a genetically encoded optical sensor of neural activity using electrophysiology in intact adult fruit flies. Front Neural Circ 1:3

    Google Scholar 

  27. Yaksi E, Friedrich RW (2006) Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging. Nat Methods 3:377–383

    Article  PubMed  CAS  Google Scholar 

  28. Murthy M, Turner GC (2010) In vivo whole-cell recordings in the Drosophila brain. In: Zhang B, Waddell S, Freeman M (eds) Drosophila neurobiology methods: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  29. Wang JW, Wong AM, Flores J, Vosshall LB, Axel R (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282

    Article  PubMed  CAS  Google Scholar 

  30. Bate M (1993) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  31. Seelig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, Reiser MB, Jayaraman V (2010) Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat Methods 7:535–540

    Article  PubMed  CAS  Google Scholar 

  32. Guizar-Sicairos M, Thurman ST, Fienup JR (2008) Efficient subpixel image registration algorithms. Opt Lett 33:156–158

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

K.S.H. is supported by the Crick-Clay fellowship from the Watson School of Biological Sciences and predoctoral training grant 5T32GM065094 from the National Institute of General Medical Sciences. E.G. is supported by the Elisabeth Sloan Livingston fellowship from the Watson School of Biological Sciences. This work was funded by NIH grant R01 DC010403-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn C. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Campbell, R.A.A., Honegger, K.S., Gruntman, E., Turner, G.C. (2012). Two-Photon Imaging of Population Activity with Genetically Encoded Calcium Indicators in Living Flies. In: Martin, JR. (eds) Genetically Encoded Functional Indicators. Neuromethods, vol 72. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-014-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-014-4_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-013-7

  • Online ISBN: 978-1-62703-014-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics