Skip to main content

Conducting Molecular Biomarker Discovery Studies in Plants

  • Protocol
  • First Online:
High-Throughput Phenotyping in Plants

Abstract

Molecular biomarkers are molecules whose concentrations in a biological system inform about the current phenotypical state and, more importantly, may also be predictive of future phenotypic trait endpoints. The identification of biomarkers has gained much attention in targeted plant breeding since technologies have become available that measure many molecules across different levels of molecular organization and at decreasing costs. In this chapter, we outline the general strategy and workflow of conducting biomarker discovery studies. Critical aspects of study design as well as the statistical data analysis and model building will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCouch S (2004) Diversifying selection in plant breeding. PLoS Biol 2:e347

    Article  PubMed  Google Scholar 

  2. Vale G, Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E (2005) Marker assisted selection in crop plants. Plant Cell Tissue Organ Cult 82:317–342

    Article  Google Scholar 

  3. Oliveira MM, Negrao S, Jena KK, Mackill D (2008) Integration of genomic tools to assist breeding in the japonica subspecies of rice. Mol Breed 22:159–168

    Article  Google Scholar 

  4. Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  PubMed  CAS  Google Scholar 

  5. Mackill DJ, Collard BCY (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    Article  PubMed  Google Scholar 

  6. Steinfath M, Strehmel N, Peters R, Schauer N, Groth D, Hummel J, Steup M, Selbig J, Kopka J, Geigenberger P et al (2010) Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach. Plant Biotechnol J 8:900–911

    Article  PubMed  CAS  Google Scholar 

  7. Meyer RC, Steinfath M, Lisec J, Becher M, Witucka-Wall H, Torjek O, Fiehn O, Eckardt A, Willmitzer L, Selbig J et al (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:4759–4764

    Article  PubMed  CAS  Google Scholar 

  8. Korn M, Gartner T, Erban A, Kopka J, Selbig J, Hincha DK (2010) Predicting Arabidopsis freezing tolerance and heterosis in freezing tolerance from metabolite composition. Mol Plant 3:224–235

    Article  PubMed  CAS  Google Scholar 

  9. Gartner T, Steinfath M, Andorf S, Lisec J, Meyer RC, Altmann T, Willmitzer L, Selbig J (2009) Improved heterosis prediction by combining information on DNA- and metabolic markers. PLoS One 4:e5220

    Article  PubMed  Google Scholar 

  10. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, Cronin M, Baehner FL, Watson D, Bryant J et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24:3726–3734

    Article  PubMed  CAS  Google Scholar 

  11. Paik S (2006) Methods for gene expression profiling in clinical trials of adjuvant breast cancer therapy. Clin Cancer Res 12:1019s–1023s

    Article  PubMed  CAS  Google Scholar 

  12. Deng MC, Eisen HJ, Mehra MR, Billingham M, Marboe CC, Berry G, Kobashigawa J, Johnson FL, Starling RC, Murali S et al (2006) Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling. Am J Transplant 6:150–160

    Article  PubMed  CAS  Google Scholar 

  13. Fan Y, Wang J, Yang Y, Liu Q, Fan Y, Yu J, Zheng S, Li M, Wang J (2010) Detection and identification of potential biomarkers of breast cancer. J Cancer Res Clin Oncol 136:1243–1254

    Article  PubMed  CAS  Google Scholar 

  14. Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492

    Article  PubMed  CAS  Google Scholar 

  15. Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9:811–818

    Article  PubMed  CAS  Google Scholar 

  16. Nicholson G, Rantalainen M, Maher AD, Li JV, Malmodin D, Ahmadi KR, Faber JH, Hallgrimsdottir IB, Barrett A, Toft H et al (2011) Human metabolic profiles are stably controlled by genetic and environmental variation. Mol Syst Biol 7:525

    Article  PubMed  Google Scholar 

  17. Bergmann W (1992) Colour atlas nutritional disorders of plants: visual and analytical diagnosis. Gustav Fisher Verlag, Jena. Germany

    Google Scholar 

  18. Geigenberger P, Tiessen A, Meurer J (2011) Use of non-aqueous fractionation and metabolomics to study chloroplast function in Arabidopsis. Methods Mol Biol 775:135–160

    Article  PubMed  CAS  Google Scholar 

  19. Fernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka J, Carroll AJ, Saito K, Fraser PD, Deluca V (2011) Recommendations for reporting metabolite data. Plant Cell 23:2477–2482

    Article  PubMed  CAS  Google Scholar 

  20. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  PubMed  CAS  Google Scholar 

  21. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York

    Google Scholar 

  22. Peng HC, Long FH, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238

    Article  PubMed  Google Scholar 

  23. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  24. Larranaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano JA, Armananzas R, Santafe G, Perez A et al (2006) Machine learning in bioinformatics. Brief Bioinform 7:86–112

    Article  PubMed  CAS  Google Scholar 

  25. Kotsiantis SB, Zaharakis ID, Pintelas PE (2006) Machine learning: a review of classification and combining techniques. Artif Intell Rev 26:159–190

    Article  Google Scholar 

  26. Mccullagh P (1980) Regression-models for ordinal data. J R Stat Soc Series B Methodol 42:109–142

    Google Scholar 

  27. Lal TN, Chapelle O, Weston J, Elisseeff A (2006) Embedded methods. In: Guyon G, Nikravesh, Zadeh (eds) Feature extraction: foundation and applications. Springer, New York, pp 137–162

    Google Scholar 

  28. Huda S, Yearwood J, Strainieri A (2010) Hybrid wrapper-filter approaches for input feature selection using maximum relevance and artificial neural network input gain measurement approximation (ANNIGMA). NSS ‘10 Proceedings of the 2010 Fourth International Conference on Network and Systems Security

    Google Scholar 

  29. Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517

    Article  PubMed  CAS  Google Scholar 

  30. Guyon I, Gunn S, Nikravesh M, Zadeh LA (2006) Feature extraction: foundations and applications (studies in fuzziness and soft computing). Springer, New York

    Google Scholar 

  31. Kantardzic M (2002) Data mining: concepts, models, methods, and algorithms. Wiley Hoboken, New Jersey, USA

    Google Scholar 

  32. Breiman L (2001) Random forests. Mach Lear 45:5–32

    Article  Google Scholar 

  33. Lorena AC, de Carvalho ACPLF, Gama JMP (2008) A review on the combination of binary classifiers in multiclass problems. Artif Intell Rev 30:19–37

    Article  Google Scholar 

  34. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc Int Conf Artific Intelli

    Google Scholar 

  35. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Methodol 58:267–288

    Google Scholar 

  36. Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. Chapman & Hall

    Google Scholar 

Download references

Acknowledgments

Support for this work was provided by the BMELV-funded TROST and the BMBF-funded SEPSAPE projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Walther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schudoma, C. et al. (2012). Conducting Molecular Biomarker Discovery Studies in Plants. In: Normanly, J. (eds) High-Throughput Phenotyping in Plants. Methods in Molecular Biology, vol 918. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-995-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-995-2_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-994-5

  • Online ISBN: 978-1-61779-995-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics