Skip to main content

Media Composition: Energy Sources and Metabolism

  • Protocol
  • First Online:
Embryo Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 912))

Abstract

The preparation of defined culture media for embryo development has progressed from simple chemically defined media based on Krebs-Ringer bicarbonate, supplemented with glucose, bovine plasma albumin, antibiotics and utilizing a CO2-bicarbonate buffering system to more complete systems based around studies on the physiology and metabolism of the mammalian embryo. Although the concentration of substrates used in media can vary, there are many components that are quintessentially important for embryo development such as energy sources, that play a vital role in regulation of metabolism and hence viability. Here we describe the role of energy substrates within culture media and outline assays which can be utilized to measure embryo metabolism as a mechanism for determining embryo physiology and viability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leese HJ (1988) The formation and function of oviduct fluid. J Reprod Fertil 82(2): 843–856

    Article  PubMed  CAS  Google Scholar 

  2. Leese HJ (1995) Metabolic control during preimplantation mammalian development. Hum Reprod Update 1(1):63–72

    Article  PubMed  CAS  Google Scholar 

  3. Brinster RL (1967) Protein content of the mouse embryo during the first five days of development. J Reprod Fertil 13(3):413–420

    Article  PubMed  CAS  Google Scholar 

  4. Leese HJ (1991) Metabolism of the preimplantation mammalian embryo. Oxf Rev Reprod Biol 13:35–72

    PubMed  CAS  Google Scholar 

  5. Gardner DK et al (1996) Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril 65(2):349–353

    PubMed  CAS  Google Scholar 

  6. Fischer B, Bavister BD (1993) Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 99(2):673–679

    Article  PubMed  CAS  Google Scholar 

  7. Casslen BG (1987) Free amino acids in human uterine fluid. Possible role of high taurine concentration. J Reprod Med 32(3):181–184

    PubMed  CAS  Google Scholar 

  8. Miller JG, Schultz GA (1987) Amino acid content of preimplantation rabbit embryos and fluids of the reproductive tract. Biol Reprod 36(1):125–129

    Article  PubMed  CAS  Google Scholar 

  9. Maas DH, Storey BT, Mastroianni L Jr (1977) Hydrogen ion and carbon dioxide content of the oviductal fluid of the rhesus monkey (Macaca mulatta). Fertil Steril 28(9): 981–985

    PubMed  CAS  Google Scholar 

  10. Lane M, Gardner DK (1996) Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum Reprod 11(9): 1975–1978

    Article  PubMed  CAS  Google Scholar 

  11. Lane M, Gardner DK (2005) Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod Fertil Dev 17(3):371–378

    Article  PubMed  CAS  Google Scholar 

  12. Biggers JD, Stern S (1973) Metabolism of the preimplantation mammalian embryo. Adv Reprod Physiol 6:1–59

    PubMed  CAS  Google Scholar 

  13. Brinster RL (1965) Studies on the development of mouse embryos in vitro. IV. Interaction of energy sources. J Reprod Fertil 10(2):227–240

    Article  PubMed  CAS  Google Scholar 

  14. Wales RG, Whittingham (1973) The metabolism of specifically labelled lactate and pyruvate by two-cell mouse embryos. J Reprod Fertil 33(2):207–222

    Article  PubMed  CAS  Google Scholar 

  15. Conaghan J et al (1993) Selection criteria for human embryo transfer: a comparison of pyruvate uptake and morphology. J Assist Reprod Genet 10(1):21–30

    Article  PubMed  CAS  Google Scholar 

  16. Hardy K et al (1989) Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Hum Reprod 4(2):188–191

    PubMed  CAS  Google Scholar 

  17. Gott AL et al (1990) Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum Reprod 5(1):104–108

    PubMed  CAS  Google Scholar 

  18. Gardner DK et al (2001) Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril 76(6):1175–1180

    Article  PubMed  CAS  Google Scholar 

  19. Biggers JD, Whittingham DG, Donahue RP (1967) The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci USA 58(2):560–567

    Article  PubMed  CAS  Google Scholar 

  20. Whitten WK (1957) Culture of tubal ova. Nature 179(4569):1081–1082

    Article  PubMed  CAS  Google Scholar 

  21. Brinster RL (1965) Studies on the development of mouse embryos in vitro. II. The effect of energy source. J Exp Zool 158:59–68

    Article  PubMed  CAS  Google Scholar 

  22. Whitten WK (1956) Culture of tubal mouse ova. Nature 177(4498):96

    Article  PubMed  CAS  Google Scholar 

  23. Brinster RL, Thomson JL (1966) Development of eight-cell mouse embryos in vitro. Exp Cell Res 42(2):308–315

    Article  PubMed  CAS  Google Scholar 

  24. Daniel JC Jr, Krishnan RS (1967) Amino acid requirements for growth of the rabbit blastocyst in vitro. J Cell Physiol 70(2):155–160

    Article  PubMed  CAS  Google Scholar 

  25. Martin KL, Leese HJ (1995) Role of glucose in mouse preimplantation embryo development. Mol Reprod Dev 40(4):436–443

    Article  PubMed  CAS  Google Scholar 

  26. Pantaleon M, Scott J, Kaye PL (2008) Nutrient sensing by the early mouse embryo: hexosamine biosynthesis and glucose signaling during preimplantation development. Biol Reprod 78(4):595–600

    Article  PubMed  CAS  Google Scholar 

  27. Lane M, Gardner DK (1998) Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum Reprod 13(4): 991–997

    Article  PubMed  CAS  Google Scholar 

  28. Renard JP, Philippon A, Menezo Y (1980) In-vitro uptake of glucose by bovine blastocysts. J Reprod Fertil 58(1):161–164

    Article  PubMed  CAS  Google Scholar 

  29. Gardner DK, Leese HJ (1987) Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J Exp Zool 242(1):103–105

    Article  PubMed  CAS  Google Scholar 

  30. Van den Bergh M et al (2001) Glycolytic ­activity: a possible tool for human blastocyst selection. Reprod Biomed Online 3(Suppl 1):8

    Google Scholar 

  31. Menezo Y, Laviolette P (1972) Amino constituents of tubal secretions in the rabbit. Zymogram—proteins—free amino acids. Ann Biol Anim Biochim Biophys 12(3):383–396

    Article  PubMed  CAS  Google Scholar 

  32. Gardner DK, Leese HJ (1990) Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. J Reprod Fertil 88(1):361–368

    Article  PubMed  CAS  Google Scholar 

  33. Epstein CJ, Smith SA (1973) Amino acid uptake and protein synthesis in preimplantation mouse embryos. Dev Biol 33(1):171–184

    Article  PubMed  CAS  Google Scholar 

  34. Lane M, Gardner DK (1997) Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil 109(1):153–164

    Article  PubMed  CAS  Google Scholar 

  35. Van Winkle LJ, Haghighat N, Campione AL (1990) Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J Exp Zool 253(2):215–219

    Article  PubMed  Google Scholar 

  36. Dumoulin JC et al (1997) Taurine acts as an osmolyte in human and mouse oocytes and embryos. Biol Reprod 56(3):739–744

    Article  PubMed  CAS  Google Scholar 

  37. Nasr-Esfahani MH, Winston NJ, Johnson MH (1992) Effects of glucose, glutamine, ethylenediaminetetraacetic acid and oxygen tension on the concentration of reactive oxygen species and on development of the mouse preimplantation embryo in vitro. J Reprod Fertil 96(1):219–231

    Article  PubMed  CAS  Google Scholar 

  38. Edwards LJ, Williams DA, Gardner DK (1998) Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum Reprod 13(12):3441–3448

    Article  PubMed  CAS  Google Scholar 

  39. Dawson KM, Collins JL, Baltz JM (1998) Osmolarity-dependent glycine accumulation indicates a role for glycine as an organic osmolyte in early preimplantation mouse embryos. Biol Reprod 59(2):225–232

    Article  PubMed  CAS  Google Scholar 

  40. Wu F, Cholewa B, Mattson DL (2000) Characterization of l-arginine transporters in rat renal inner medullary collecting duct. Am J Physiol Regul Integr Comp Physiol 278(6):R1506–R1512

    PubMed  CAS  Google Scholar 

  41. Dumoulin JC et al (1992) Temporal effects of taurine on mouse preimplantation development in vitro. Hum Reprod 7(3):403–407

    PubMed  CAS  Google Scholar 

  42. Gardner DK, Lane M (1993) Amino acids and ammonium regulate mouse embryo development in culture. Biol Reprod 48(2):377–385

    Article  PubMed  CAS  Google Scholar 

  43. Gardner DK, Lane M (1996) Alleviation of the ‘2-cell block’ and development to the ­blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum Reprod 11(12):2703–2712

    Article  PubMed  CAS  Google Scholar 

  44. Kane MT, Carney EW, Bavister BD (1986) Vitamins and amino acids stimulate hamster blastocysts to hatch in vitro. J Exp Zool 239(3):429–432

    Article  PubMed  CAS  Google Scholar 

  45. Bavister BD, Arlotto T (1990) Influence of single amino acids on the development of hamster one-cell embryos in vitro. Mol Reprod Dev 25(1):45–51

    Article  PubMed  CAS  Google Scholar 

  46. Carney EW, Bavister BD (1987) Stimulatory and inhibitory effects of amino acids on the development of hamster eight-cell embryos in vitro. J In Vitro Fertil Embryo Transfer 4(3):162–167

    Article  CAS  Google Scholar 

  47. Gardner DK et al (1994) Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol Reprod 50(2):390–400

    Article  PubMed  CAS  Google Scholar 

  48. Takahashi Y, First NL (1992) In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 37(5):963–978

    Article  PubMed  CAS  Google Scholar 

  49. Steeves TE, Gardner DK (1999) Temporal and differential effects of amino acids on bovine embryo development in culture. Biol Reprod 61(3):731–740

    Article  PubMed  CAS  Google Scholar 

  50. Devreker F, Winston RM, Hardy K (1998) Glutamine improves human preimplantation development in vitro. Fertil Steril 69(2):293–299

    Article  PubMed  CAS  Google Scholar 

  51. Devreker F et al (1999) Effects of taurine on human embryo development in vitro. Hum Reprod 14(9):2350–2356

    Article  PubMed  CAS  Google Scholar 

  52. Eagle H (1959) Amino acid metabolism in mammalian cell cultures. Science 130(3373):432–437

    Article  PubMed  CAS  Google Scholar 

  53. Houghton FD, Leese HJ (2004) Metabolism and developmental competence of the ­preimplantation embryo. Eur J Obstet Gynecol Reprod Biol 115(Suppl):S92–S96

    Article  PubMed  CAS  Google Scholar 

  54. Brison DR et al (2004) Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod 19(10):2319–2324

    Article  PubMed  CAS  Google Scholar 

  55. Sturmey RG et al (2009) Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim 44(Suppl 3):50–58

    Article  PubMed  Google Scholar 

  56. Haggarty P et al (2006) Fatty acid metabolism in human preimplantation embryos. Hum Reprod 21(3):766–773

    Article  PubMed  CAS  Google Scholar 

  57. Abe H et al (2002) Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol Reprod Dev 61(1): 57–66

    Article  PubMed  CAS  Google Scholar 

  58. Reis A et al (2003) Consequences of exposure to serum, with or without vitamin E supplementation, in terms of the fatty acid content and viability of bovine blastocysts produced in vitro. Reprod Fertil Dev 15(5):275–284

    Article  PubMed  CAS  Google Scholar 

  59. Ferguson EM, Leese HJ (1999) Triglyceride content of bovine oocytes and early embryos. J Reprod Fertil 116(2):373–378

    Article  PubMed  CAS  Google Scholar 

  60. Kim JY et al (2001) Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes. Reproduction 122(1):131–138

    Article  PubMed  CAS  Google Scholar 

  61. Sturmey RG, Leese HJ (2003) Energy metabolism in pig oocytes and early embryos. Reproduction 126(2):197–204

    Article  PubMed  CAS  Google Scholar 

  62. Matorras R et al (1998) Fatty acid composition of fertilization-failed human oocytes. Hum Reprod 13(8):2227–2230

    Article  PubMed  CAS  Google Scholar 

  63. Chen RF (1967) Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem 242(2):173–181

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Lane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zander-Fox, D., Lane, M. (2012). Media Composition: Energy Sources and Metabolism. In: Smith, G., Swain, J., Pool, T. (eds) Embryo Culture. Methods in Molecular Biology, vol 912. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-971-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-971-6_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-970-9

  • Online ISBN: 978-1-61779-971-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics