Skip to main content

Use of Qualitative Environmental and Phenotypic Variables in the Context of Allele Distribution Models: Detecting Signatures of Selection in the Genome of Lake Victoria Cichlids

  • Protocol
  • First Online:
Data Production and Analysis in Population Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 888))

Abstract

When searching for loci possibly under selection in the genome, an alternative to population genetics theoretical models is to establish allele distribution models (ADM) for each locus to directly correlate allelic frequencies and environmental variables such as precipitation, temperature, or sun radiation. Such an approach implementing multiple logistic regression models in parallel was implemented within a computing program named Matsam. Recently, this application was improved in order to support qualitative environmental predictors as well as to permit the identification of associations between genomic variation and individual phenotypes, allowing the detection of loci involved in the genetic architecture of polymorphic characters. Here, we present the corresponding methodological developments and compare the results produced by software implementing population genetics theoretical models (Dfdist and BayeScan) and ADM (Matsam) in an empirical context to detect signatures of genomic divergence associated with speciation in Lake Victoria cichlid fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74:175–195

    PubMed  CAS  Google Scholar 

  2. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B 263:1619–1626

    Article  Google Scholar 

  3. Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980

    Article  PubMed  CAS  Google Scholar 

  4. Joost S, Bonin A, Bruford MW et al (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969

    Article  PubMed  CAS  Google Scholar 

  5. Poncet BN, Herrmann D, Gugerli F et al (2010) Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina. Mol Ecol 19:2896–2907

    Article  PubMed  CAS  Google Scholar 

  6. Mitton JB, Linhart YB, Hamrick JL, Beckman JS (1977) Observations on genetic structure and mating system of ponderosa pine in Colorado Front Range. Theor Appl Genet 51:5–13

    Article  Google Scholar 

  7. Mitton JB, Sturgeon KB, Davis ML (1980) Genetic differentiation in ponderosa pine along a steep elevational gradient. Silvae Genet 29:100–103

    Google Scholar 

  8. Stutz HP, Mitton JB (1988) Genetic variation in Engelmann spruce associated with variation in soil moisture. Arctic Alpine Res 20: 461–465

    Article  Google Scholar 

  9. Joshi J, Schmid B, Caldeira MC et al (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4:536–544

    Article  Google Scholar 

  10. Skøt L, Hamilton NRS, Mizen S, Chorlton KH, Thomas ID (2002) Molecular genecology of temperature response in Lolium perenne: 2. association of AFLP markers with ecogeography. Mol Ecol 11:1865–1876

    Article  PubMed  Google Scholar 

  11. Joost S (2006) The geographic dimension of genetic diversity: a GIScience contribution for the conservation of animal genetic resources. In: School of Civil and Environmental Engineering (ENAC), p. 178. No 3454, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne

    Google Scholar 

  12. Joost S, Kalbermatten M, Bonin A (2008) Spatial analysis method (SAM): a software tool combining molecular and environmental data to identify candidate loci for selection. Mol Ecol Resour 8:957–960

    Article  PubMed  Google Scholar 

  13. Joost S, Bonin A (2007) Quantitative geography and genomics: spatial analysis to detect signatures of selection along a gradient of altitude in the common frog (Rana temporaria). In: Institute of Geography (ed) 15th European colloquium on theoretical and quantitative geography. University of Lausanne, Montreux, Switzerland

    Google Scholar 

  14. Pariset L, Joost S, Marsan PA, Valentini A, Consortium E (2009) Landscape genomics and biased FST approaches reveal single nucleotide polymorphisms under selection in goat breeds of North-East Mediterranean. BMC Genet 10

    Google Scholar 

  15. Tonteri A, Vasemagi A, Lumme J, Primmer CR (2010) Beyond MHC: signals of elevated selection pressure on Atlantic salmon (Salmo salar) immune-relevant loci. Mol Ecol 19:1273–1282

    Article  PubMed  CAS  Google Scholar 

  16. Parisod C, Joost S (2010) Divergent selection in trailing- versus leading-edge populations of Biscutella laevigata. Ann Bot 105:655–660

    Article  PubMed  CAS  Google Scholar 

  17. Freeland JR, Biss P, Conrad KF, Silvertown J (2010) Selection pressures have caused genome-wide population differentiation of Anthoxanthum odoratum despite the potential for high gene flow. J Evol Biol 23:776–782

    Article  PubMed  CAS  Google Scholar 

  18. Dobson AJ, Barnett AG (2008) An introduction to generalized linear models, 3rd edn. CRC. 307p. Boca Raton, Florida 307p

    Google Scholar 

  19. Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley Series in Probability and Statistics. 375p. Hoboken, New Jersey

    Google Scholar 

  20. Seehausen O, van Alphen JM (1999) Can sympatric speciation by disruptive sexual selection explain rapid evolution of cichlid diversity in Lake Victoria? Ecol Lett 2:262–271

    Article  Google Scholar 

  21. Seehausen O (2009) Progressive levels of trait divergence along a “speciation transect” in the Lake Victoria cichlid fish Pundamilia. In: Butlin RK, Schluter D, Bridle J (eds) Speciation and patterns of diversity. Cambridge University Press. Cambridge, UK

    Google Scholar 

  22. Seehausen O, van Alphen JJM, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–1811

    Article  CAS  Google Scholar 

  23. Seehausen O, Terai Y, Magalhaes IS et al (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–623

    Article  PubMed  CAS  Google Scholar 

  24. Magalhaes IS, Mwaiko S, Schneider MV, Seehausen O (2009) Divergent selection and phenotypic plasticity during incipient speciation in Lake Victoria cichlid fish. J Evol Biol 22:260–274

    Article  PubMed  CAS  Google Scholar 

  25. Bezault E, Dheyongera G, Mwaiko S, Magalhaes I, Seehausen O. (in prep.) Genomic signature of divergent adaptation along replicated environmental gradients in Lake Victoria cichlid fish

    Article  PubMed  CAS  Google Scholar 

  26. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed  Google Scholar 

  27. Seehausen O (1997) Distribution of and reproductive isolation among color morphs of a rock-dwelling Lake Victoria cichlid (Haplochromis nyererei). Ecol Freshw Fish 6:57

    Article  Google Scholar 

  28. Wilding CS, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J Evol Biol 14:611–619

    Article  CAS  Google Scholar 

  29. Campbell D, Bernatchez L (2004) Generic scan using AFLP markers as a means to assess the role of directional selection in the divergence of sympatric whitefish ecotypes. Mol Biol Evol 21:945–956

    Article  PubMed  CAS  Google Scholar 

  30. Caballero A, Quesada H, Rolan-Alvarez E (2008) Impact of amplified fragment length polymorphism size homoplasy on the estimation of population genetic diversity and the detection of selective loci. Genetics 179:539–554

    Article  PubMed  Google Scholar 

  31. Nielsen EE, Hemmer-Hansen J, Poulsen NA et al (2009) Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evol Biol 9 , 276p. doi:10.1186/1471-2148-9-276

    Google Scholar 

  32. Spitze K (1993) Population-structure in Daphnia obtusa – quantitative genetic and allozymic variation. Genetics 135:367–374

    PubMed  CAS  Google Scholar 

  33. Whitlock MC (2008) Evolutionary inference from QST. Mol Ecol 17:1885–1896

    Article  PubMed  Google Scholar 

  34. Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103:285–298

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Geoffrey Dheyongera, Salome Mwaiko, and Isabel Magalhaes for their participation to the project. We are also grateful to Martine Maan, Alan Hudson, Kay Lucek, and Mathieu Foll for their contribution to fruitful scientific discussions about the issues presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Joost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Joost, S., Kalbermatten, M., Bezault, E., Seehausen, O. (2012). Use of Qualitative Environmental and Phenotypic Variables in the Context of Allele Distribution Models: Detecting Signatures of Selection in the Genome of Lake Victoria Cichlids. In: Pompanon, F., Bonin, A. (eds) Data Production and Analysis in Population Genomics. Methods in Molecular Biology, vol 888. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-870-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-870-2_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-869-6

  • Online ISBN: 978-1-61779-870-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics