Skip to main content

Two Flavors of Bulk Segregant Analysis in Yeast

  • Protocol
  • First Online:
Quantitative Trait Loci (QTL)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 871))

Abstract

Genetic mapping methods typically rely upon genotyping many individuals in a mapping population. In contrast, bulk segregant analysis looks for biases in genotype in phenotyped pools of segregants. For relatively strong and genetically simple traits, it can be a fast, inexpensive approach. Although it is technically possible to use many genotyping platforms, microarray-based methods are convenient for their genome-wide coverage, ease of use, and quantitative output. Also, precise knowledge of polymorphic sites is not required. I present two methods for bulk segregant analysis using microarrays, one based on hybridization differences between polymorphisms, and the other using an enzymatic method for enriching identical by descent segments of the genome. The first method requires specialized array platforms, while the second, genomic mismatch scanning (GMS), is compatible with any microarray. Although the methods presented are with yeast, most steps are equivalent for other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michelmore R, Paran I, Kesseli R (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  2. Borevitz J, Liang D, Plouffe D, Chang H, Zhu T, Weigel D, Berry C, Winzeler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523

    Article  PubMed  CAS  Google Scholar 

  3. Hazen S, Borevitz J, Harmon F, Pruneda-Paz J, Schultz T, Yanovsky M, Liljegren S, Ecker J, Kay S (2005) Rapid array mapping of circadian clock and developmental mutations in Arabidopsis. Plant Physiol 138:990–997

    Article  PubMed  CAS  Google Scholar 

  4. Brauer MJ, Christianson CM, Pai DA, Dunham MJ (2006) Mapping novel traits by array-assisted bulk segregant analysis in Saccharomyces cerevisiae. Genetics 173:1813–1816

    Article  PubMed  CAS  Google Scholar 

  5. Segre A, Murray A, Leu J (2006) High-resolution mutation mapping reveals parallel experimental evolution in yeast. PLoS Biol 4:e256

    Article  PubMed  Google Scholar 

  6. Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L (2010) Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464:1039–1042

    Article  PubMed  CAS  Google Scholar 

  7. Gresham D, Curry B, Ward A, Gordon DB, Brizuela L, Kruglyak L, Botstein D (2010) Optimized detection of sequence variation in heterozygous genomes using DNA microarrays with isothermal-melting probes. Proc Natl Acad Sci U S A 107:1482–1487

    Article  PubMed  CAS  Google Scholar 

  8. McAllister L, Penland L, Brown P (1998) Enrichment for loci identical-by-descent between pairs of mouse or human genomes by genomic mismatch scanning. Genomics 47:7–11

    Article  PubMed  CAS  Google Scholar 

  9. Nelson S, McCusker J, Sander M, Kee Y, Modrich P, Brown P (1993) Genomic mismatch scanning: a new approach to genetic linkage mapping. Nat Genet 4:11–18

    Article  PubMed  CAS  Google Scholar 

  10. Smirnov D, Bruzel A, Morley M, Cheung V (2004) Direct IBD mapping: identical-by-descent mapping without genotyping. Genomics 83:335–345

    Article  PubMed  CAS  Google Scholar 

  11. Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jorgensen J-E, Weigel D, Andersen SU (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551

    Article  PubMed  CAS  Google Scholar 

  12. Wenger JW, Schwartz K, Sherlock G (2010) Bulk segregant analysis by high throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 6:e1000942

    Article  PubMed  Google Scholar 

  13. Birkeland SR, Jin N, Ozdemir AC, Lyons RH, Weisman LS, Wilson TE (2010) Discovery of mutations in Saccharomyces cerevisiae by pooled linkage analysis and whole genome sequencing. Genetics 186(4):1127–1137

    Article  PubMed  CAS  Google Scholar 

  14. Gresham D, Ruderfer DM, Pratt SC, Schacherer J, Dunham MJ, Botstein D, Kruglyak L (2006) Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science 311:1932–1936

    Article  PubMed  CAS  Google Scholar 

  15. Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20:3246–3248

    Article  PubMed  CAS  Google Scholar 

  16. Boer VM, Amini S, Botstein D (2008) Influence of genotype and nutrition on survival and metabolism of starving yeast. Proc Natl Acad Sci U S A 105:6930–6935

    Article  PubMed  CAS  Google Scholar 

  17. Fiumera H, Dunham M, Saracco S, Butler C, Kelly J, Fox T (2009) Translocation and assembly of mitochondrially coded Saccharomyces cerevisiae cytochrome c oxidase subunit Cox2 by Oxa1 and Yme1, in the absence of Cox18. Genetics 182:519–528

    Article  PubMed  CAS  Google Scholar 

  18. Demogines A, Smith E, Kruglyak L, Alani E (2008) Identification and dissection of a complex DNA repair sensitivity phenotype in baker’s yeast. PLoS Genet 4:e1000123

    Article  PubMed  Google Scholar 

  19. Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O’Kelly MJT, van Oudenaarden A, Barton DBH, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341

    Article  PubMed  CAS  Google Scholar 

  20. Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458:342–345

    Article  PubMed  CAS  Google Scholar 

  21. Chiang EC (2005) Transcriptional regulation of cdc31-30::kanMX as mechanism for its suppression. Princeton University, Princeton

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Matthew Brauer for joint development of these methods. Appreciation also goes to Mark Rose and Elbert Chiang for collaboration on mapping data shown in Fig. 2. Caroline McCoach, Pat Brown, and David Botstein contributed to development of GMS protocols, and USB provided preproduction MutHLS enzymes. This work was supported in part by P50 GM071508 to the Lewis-Sigler Institute at Princeton University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maitreya J. Dunham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media

About this protocol

Cite this protocol

Dunham, M.J. (2012). Two Flavors of Bulk Segregant Analysis in Yeast. In: Rifkin, S. (eds) Quantitative Trait Loci (QTL). Methods in Molecular Biology, vol 871. Humana Press. https://doi.org/10.1007/978-1-61779-785-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-785-9_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-784-2

  • Online ISBN: 978-1-61779-785-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics