Skip to main content

The Effect of Antifoam Addition on Protein Production Yields

  • Protocol
  • First Online:
Recombinant Protein Production in Yeast

Part of the book series: Methods in Molecular Biology ((MIMB,volume 866))

Abstract

Pichia pastoris is a widely used host for recombinant protein production. The foaming associated with culturing it on a large scale is commonly prevented by the addition of chemical antifoaming agents or “antifoams.” Unexpectedly, the addition of a range of antifoams to both shake flask and bioreactor cultures of P. pastoris has been shown to alter the total yield of the recombinant protein being produced. Possible explanations for this are that the presence of the antifoam increases the total amount of protein being produced and secreted per cell or that it increases the density of the culture. Antifoaming agents may therefore have specific effects on the growth and yield characteristics of recombinant cultures, in addition to their primary action as de-foamers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holmes WJ, Smith R, Bill RM (2006) Evaluation of antifoams in the expression of a recombinant FC fusion protein in shake flask cultures of Saccharomyces cerevisiae. Microb Cell Fact 5:30

    Article  Google Scholar 

  2. Varley J, Brown A, Boyd R, Dodd P, Gallagher S (2004) Dynamic multipoint measurement of foam behaviour for a continuous fermentation over a range of key process variables. Biochem Eng J 20:61–72

    Article  CAS  Google Scholar 

  3. Höefer R, Jost F, Schwuger MJ, Scharf R, Geke J, Kresse J, Lingman H, Veitenhansl R, Erwied W (2000) Uilmann’s Encyclopedia of Industrial Chemistry. Wiley-VCM

    Google Scholar 

  4. Joshi K, Jeelani S, Blickenstorfer C, Naegeli I, Windhab E (2005) Influence of fatty alcohol antifoam suspensions on foam stability. Colloids Surf A 263:239–249

    Article  CAS  Google Scholar 

  5. Denkov ND, Krastanka M, Christova C, Hadjiiski A, Cooper P (2000) Mechanisms of action of mixed solid–liquid antifoams: 3. Exhaustion and reactivation. Langmuir 21:8163–8619

    Google Scholar 

  6. Al-Masry W (1999) Effects of antifoam and scale-up on operation of bioreactors. Chem Eng Process 38:197–201

    Article  CAS  Google Scholar 

  7. Arjunwadkar SJ, Sarvanan K, Kulkarni PR, Pandit AB (1998) Gas–liquid mass transfer in dual impeller bioreactor. Biochem Eng J 1:99–106

    Article  CAS  Google Scholar 

  8. Calik P, Ileri N, Erdinc BI, Aydogan N, Argun M (2005) Novel antifoam for fermentation processes: fluorocarbon-hydrocarbon hybrid unsymmetrical bolaform surfactant. Langmuir 21:8613–8619

    Article  PubMed  CAS  Google Scholar 

  9. Koch V, Rüffer H, Schügerl K, Innertsberger E, Menzel H, Weis J (1995) Effect of antifoam agents on the medium and microbial cell properties and process performance in small and large reactors. Process Biochem 30:435–446

    CAS  Google Scholar 

  10. Morao A, Maia C, Fonseca M, Vasconcelos J, Alves S (1999) Effect of antifoam addition in gas–liquid mass transfer in stirred fermenters. Bioprocess Eng 20:165–172

    Article  CAS  Google Scholar 

  11. Koide K, Yamazoe S, Harada S (1985) Effects of surface-active substances on gas hold up and gas–liquid mass transfer in bubble column. J Chem Eng Jpn 18:287–292

    Article  CAS  Google Scholar 

  12. Liu H-S, Chiung W-C, Wang Y-C (1994) Effect of lard oil and castor oil on oxygen transfer in an agitated fermentor. Biotechnol Tech 8:17–20

    CAS  Google Scholar 

  13. Yagi H, Yoshida F (1974) Oxygen absorption in fermenters – effects of surfactants, antifoaming agents and sterilized cells. J Ferment Technol 52:905–916

    CAS  Google Scholar 

  14. Stanbury PF, Whittaker A, Hall SJ (1995) Principles of fermentation technology, 2nd edn. Butterworth Heinemann, Oxford

    Google Scholar 

  15. Routledge SJ, Hewitt CJ, Bora N, Bill RM (2011) Antifoam addition to shake flask cultures of recombinant Pichia pastoris increases yield. Microb Cell Fact 10:17

    Article  PubMed  CAS  Google Scholar 

  16. Denkov ND, Tcholakova S, Marinova KG, Hadjiiski A (2002) Role of oil spreading for the efficiency of mixed oil–solid antifoams. Langmuir 18:5810–5817

    Article  CAS  Google Scholar 

  17. Bartsch O (1924) Über Schaumsysteme. Fortschrittsberichte über Kolloide und Polymere 20:1–49

    CAS  Google Scholar 

  18. Bandyopadhyay P, Humphrey AE (1967) Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems. Biotechnol Bioeng 9:533–544

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Routledge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+business Media, LLC

About this protocol

Cite this protocol

Routledge, S.J., Bill, R.M. (2012). The Effect of Antifoam Addition on Protein Production Yields. In: Bill, R. (eds) Recombinant Protein Production in Yeast. Methods in Molecular Biology, vol 866. Humana Press. https://doi.org/10.1007/978-1-61779-770-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-770-5_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-769-9

  • Online ISBN: 978-1-61779-770-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics