Skip to main content

Zebrafish and Drug Development: A Behavioral Assay System for Probing Nicotine Function in Larval Zebrafish

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 66))

Abstract

The attributes of the zebrafish (Danio rerio) make it an excellent model system for the development and discovery of new drugs. A robust behavioral assay is described that has been used successfully in studies of nicotine biology. The movement response of a group of larval zebrafish is measured over a 5-min period following application of nicotine. Pretreatment of larvae is employed to identify chemical compounds that reduce locomotor responses to acute nicotine. Activity plots provide an assessment of the biological activity and specificity of neuroactive chemical compounds in intact organisms. The experimental setup can be established in a research or teaching laboratory. The described behavioral assay can be used in pharmacological studies for the characterization of new chemical compounds and is a powerful tool for the discovery of behavioral zebrafish mutants.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kenakin T (2003) Predicting therapeutic value in the lead optimization phase of drug discovery. Nat Rev Drug Discov 2:429–438

    Article  PubMed  CAS  Google Scholar 

  2. Tecott LH, Nestler EJ (2004) Neurobehavioral assessment in the information age. Nat Neurosci 7:462–466

    Article  PubMed  CAS  Google Scholar 

  3. Kenakin TP (2009) Cellular assays as portals to seven-transmembrane receptor-based drug discovery. Nat Rev Drug Discov 8:617–626

    Article  PubMed  CAS  Google Scholar 

  4. Baldessari D, Mione M (2008) How to create the vascular tree? (Latest) help from the zebrafish. Pharmacol Ther 118:206–230

    Article  PubMed  CAS  Google Scholar 

  5. Berghmans S, Hunt J, Roach A, Goldsmith P (2007) Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res 75:18–28

    Article  PubMed  CAS  Google Scholar 

  6. Buckley CE, Marguerie A, Roach AG, Goldsmith P, Fleming A, Alderton WK, Franklin RJM (2010) Drug reprofiling using zebrafish identifies novel compounds with potential pro-myelination effects. Neuropharmacology 59:149–159

    Article  PubMed  CAS  Google Scholar 

  7. Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff AV (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205:38–44

    Article  PubMed  CAS  Google Scholar 

  8. Kitambi SS, McCulloch KJ, Peterson RT, Malicki JJ (2009) Small molecule screen for compounds that affect vascular development in the zebrafish retina. Mech Dev 126:464–477

    Article  PubMed  CAS  Google Scholar 

  9. Love DR, Pichler FB, Dodd A, Copp BR, Greenwood DR (2004) Technology for high-throughput screens: the present and future using zebrafish. Curr Opin Biotechnol 15:564–571

    Article  PubMed  CAS  Google Scholar 

  10. MacRae CA, Peterson RT (2003) Zebrafish-based small molecule discovery. Chem Biol 10:901–908

    Article  PubMed  CAS  Google Scholar 

  11. McAleer MF, Davidson C, Davidson WR, Yentzer B, Farber SA, Rodeck U, Dicker AP (2005) Novel use of zebrafish as a vertebrate model to screen radiation protectors and sensitizers. Int J Radiat Oncol Biol Phys 61:10–13

    Article  PubMed  CAS  Google Scholar 

  12. McGrath P, Li C-Q (2008) Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today 13:394–401

    Article  PubMed  CAS  Google Scholar 

  13. McKinley ET, Baranowski TC, Blavo DO, Cato C, Doan TN, Rubinstein AL (2005) Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Mol Brain Res 141:128–137

    Article  PubMed  CAS  Google Scholar 

  14. Meeker ND, Trede NS (2008) Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol 32:745–757

    Article  PubMed  CAS  Google Scholar 

  15. Murphey RD, Zon LI (2006) Small molecule screening in the zebrafish. Methods 39:255–261

    Article  PubMed  CAS  Google Scholar 

  16. Nguyen CT, Lu Q, Wang Y, Chen J-N (2008) Zebrafish as a model for cardiovascular development and disease. Drug Discov Today Dis Models 5:135–140

    Article  PubMed  Google Scholar 

  17. Peterson RT (2004) Discovery of therapeutic targets by phenotype-based zebrafish screens. Drug Discov Today Technol 1:49–54

    Article  CAS  Google Scholar 

  18. Peterson RT, Fishman MC (2004) Discovery and use of small molecules for probing biological processes in zebrafish. Methods Cell Biol 76:569–591

    Article  PubMed  CAS  Google Scholar 

  19. Redfern WS, Waldron G, Winter MJ, Butler P, Holbrook M, Wallis R, Valentin J-P (2008) Zebrafish assays as early safety pharmacology screens: paradigm shift or red herring? J Pharmacol Toxicol Methods 58:110–117

    Article  PubMed  CAS  Google Scholar 

  20. Sumanas S, Lin S (2004) Zebrafish as a model system for drug target screening and validation. Drug Discov Today Targets 3:89–96

    Article  CAS  Google Scholar 

  21. Winter MJ, Redfern W, Hayfield A, Owen S, Valentin JP, Hutchinson T (2008) Zebrafish embryo-larval locomotion as a frontloaded screen for assessing seizure liability during early drug discovery. J Pharmacol Toxicol Methods 58:169

    Article  Google Scholar 

  22. Eddins D, Petro A, Williams P, Cerutti DT, Levin ED (2009) Nicotine effects on learning in zebrafish: the role of dopaminergic systems. Psychopharmacology (Berl) 202:103–109

    Article  CAS  Google Scholar 

  23. Bencan Z, Levin ED (2008) The role of alpha7 and alpha4 beta2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol Behav 95:408–412

    Article  PubMed  CAS  Google Scholar 

  24. Levin ED, Bencan Z, Cerutti DT (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90:54–58

    Article  PubMed  CAS  Google Scholar 

  25. Levin ED, Chen E (2004) Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol 26:731–735

    Article  PubMed  CAS  Google Scholar 

  26. Klee EW, Ebbert JO, Schneider H, Hurt RD, Ekker SC (2011) Zebrafish for the study of the biological effects of nicotine. Nicotine Tob Res 13:301–312

    Article  PubMed  CAS  Google Scholar 

  27. Petzold AM, Balciunas D, Sivasubbu S, Clark KJ, Bedell VM, Westcot SE, Myers SR, Moulder GL, Thomas MJ, Ekker SC (2009) Nicotine response genetics in the zebrafish. Proc Natl Acad Sci U S A 106:18662–18667

    Article  PubMed  CAS  Google Scholar 

  28. Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E (2002) Development of the locomotor network in zebrafish. Prog Neurobiol 68:85–111

    Article  PubMed  CAS  Google Scholar 

  29. Buss RR, Drapeau P (2001) Synaptic drive to motoneurons during fictive swimming in the developing zebrafish. J Neurophysiol 86:197–210

    PubMed  CAS  Google Scholar 

  30. Budick SA, O’Malley DM (2000) Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J Exp Biol 203:2565–2579

    PubMed  CAS  Google Scholar 

  31. Thirumalai V, Cline HT (2008) Endogenous dopamine suppresses initiation of swimming in prefeeding zebrafish larvae. J Neurophysiol 100:1635–1648

    Article  PubMed  CAS  Google Scholar 

  32. Lawrence C (2007) The husbandry of zebrafish (Danio rerio): a review. Aquaculture 269:1–20

    Article  Google Scholar 

  33. MacPhail RC, Brooks J, Hunter DL, Padnos B, Irons TD, Padilla S (2009) Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology 30:52–58

    Article  PubMed  CAS  Google Scholar 

  34. Sallinen V, Sundvik M, Reenila I, Peitsaro N, Khrustalyov D, Anichtchik O, Toleikyte G, Kaslin J, Panula P (2009) Hyperserotonergic phenotype after monoamine oxidase inhibition in larval zebrafish. J Neurochem 109:403–415

    Article  PubMed  CAS  Google Scholar 

  35. Emran F, Rihel J, Dowling JE (2008) A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp 3(20):923. doi:10.3791/923

    Google Scholar 

  36. Budick SB, O’Malley DM (2000) Minimal behavioural deficits are observed after laser-ablation of the nMLF in larval zebrafish. Am Zool 40:959

    Google Scholar 

  37. Borla MA, Palecek B, Budick S, O’Malley DM (2002) Prey capture by larval zebrafish: evidence for fine axial motor control. Brain Behav Evol 60:207–229

    Article  PubMed  Google Scholar 

  38. McLean DL, Fetcho JR (2011) Movement, technology and discovery in the zebrafish. Curr Opin Neurobiol 21:110–115

    Article  PubMed  CAS  Google Scholar 

  39. Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT, Schier AF (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348–351

    Article  PubMed  CAS  Google Scholar 

  40. Kokel D, Bryan J, Laggner C, White R, Cheung CY, Mateus R, Healey D, Kim S, Werdich AA, Haggarty SJ, Macrae CA, Shoichet B, Peterson RT (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6:231–237

    Article  PubMed  CAS  Google Scholar 

  41. Pardo-Martin C, Chang TY, Koo BK, Gilleland CL, Wasserman SC, Yanik MF (2010) High-throughput in vivo vertebrate screening. Nat Methods 7:634–636

    Article  PubMed  CAS  Google Scholar 

  42. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  PubMed  CAS  Google Scholar 

  43. Brand M, Granato M, Nüsslein-Volhard C (2002) Keeping and raising zebrafish. In: Nüsslein-Volhard C, Dahm R (eds) Zebrafish, 1st edn. Oxford University Press, New York, NY, pp 7–37

    Google Scholar 

  44. Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210:2526–2539

    Article  PubMed  Google Scholar 

  45. Murphey RD, Stern HM, Straub CT, Zon LI (2006) A chemical genetic screen for cell cycle inhibitors in zebrafish embryos. Chem Biol Drug Des 68:213–219

    Article  PubMed  CAS  Google Scholar 

  46. Usenko CY, Harper SL, Tanguay RL (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon N Y 45:1891–1898

    Article  PubMed  CAS  Google Scholar 

  47. Clark KJ, Boczek NJ, Ekker SC (2011) Stressing zebrafish for behavioral genetics. Rev Neurosci 22:49–62

    PubMed  Google Scholar 

  48. Sackerman J, Donegan JJ, Cunningham CS, Nguyen NN, Lawless K, Long A, Benno RH, Gould GG (2010) Zebrafish behavior in novel environments: effects of acute exposure to anxiolytic compounds and choice of Danio rerio line. Int J Comp Psychol 23:43–61

    PubMed  Google Scholar 

  49. Hicks C, Sorocco D, Levin M (2006) Automated analysis of behavior: a computer-controlled system for drug screening and the investigation of learning. J Neurobiol 66:977–990

    Article  PubMed  Google Scholar 

  50. Branson K, Robie AA, Bender J, Perona P, Dickinson MH (2009) High-throughput ethomics in large groups of Drosophila. Nat Methods 6:451–457

    Article  PubMed  CAS  Google Scholar 

  51. Dews PB (1955) Studies on behavior. II. The effects of pentobarbital, methamphetamine and scopolamine on performances in pigeons involving discriminations. J Pharmacol Exp Ther 115:380–389

    PubMed  CAS  Google Scholar 

  52. Dews PB (1955) Studies on behavior. I. Differential sensitivity to pentobarbital of pecking performance in pigeons depending on the schedule of reward. J Pharmacol Exp Ther 113:393–401

    PubMed  CAS  Google Scholar 

  53. Clark KJ, Balciunas D, Pogoda HM, Ding Y, Westcot SE, Bedell VM, Greenwood TM, Urban MD, Skuster KJ, Petzold AM, Ni J, Nielsen AL, Patowary A, Scaria V, Sivasubbu S, Xu X, Hammerschmidt M, Ekker SC (2011) In vivo protein trapping produces a functional expression codex of the vertebrate proteome. Nat Methods 8:506–512

    Article  PubMed  CAS  Google Scholar 

  54. Ekker SC (2000) Morphants: a new systematic vertebrate functional genomics approach. Yeast 17:302–306

    Article  PubMed  CAS  Google Scholar 

  55. Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC (2009) A primer for morpholino use in zebrafish. Zebrafish 6:69–77

    Article  PubMed  CAS  Google Scholar 

  56. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220

    Article  PubMed  CAS  Google Scholar 

  57. Moens CB, Donn TM, Wolf-Saxon ER, Ma TP (2008) Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 7:454–459

    Article  PubMed  CAS  Google Scholar 

  58. Wang D, Jao LE, Zheng N, Dolan K, Ivey J, Zonies S, Wu X, Wu K, Yang H, Meng Q, Zhu Z, Zhang B, Lin S, Burgess SM (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proc Natl Acad Sci U S A 104:12428–12433

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support for this project was provided by DePauw University, NIH DA014546 to SCE, and Mayo Foundation. We thank the team of the Mayo Clinic Zebrafish facility and members of the Ekker-lab for their help and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schneider, H. et al. (2012). Zebrafish and Drug Development: A Behavioral Assay System for Probing Nicotine Function in Larval Zebrafish. In: Kalueff, A., Stewart, A. (eds) Zebrafish Protocols for Neurobehavioral Research. Neuromethods, vol 66. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-597-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-597-8_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-596-1

  • Online ISBN: 978-1-61779-597-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics