Skip to main content

In Silico Identification and Characterization of Effector Catalogs

  • Protocol
  • First Online:
Book cover Plant Fungal Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 835))

Abstract

Many characterized fungal effector proteins are small secreted proteins. Effectors are defined as those proteins that alter host cell structure and/or function by facilitating pathogen infection. The identification of effectors by molecular and cell biology techniques is a difficult task. However, with the availability of whole-genome sequences, these proteins can now be predicted in silico. Here, we describe in detail how to identify and characterize effectors from a defined fungal proteome using in silico techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Metkzer ML (2010) Sequencing technologies – the next generation. Nat. Rev. Genet. 11, 31–46

    Article  Google Scholar 

  2. Miller JR, Koren S and Sutton G (2010) Assembly algorithms for next-generation sequencing data. Genomics 95, 315–327

    Article  PubMed  CAS  Google Scholar 

  3. Martinez D, Grigoriev I and Salamov A (2010) Annotation of protein-coding genes in fungal genomes. Appl. Comput. Math. 9, 56–65

    Google Scholar 

  4. Finn RD, et al (2010) The Pfam protein families database. Nucl. Acid. Res. 38, 211–222

    Article  Google Scholar 

  5. Zdobnov EM and Apweiler R (2001) InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinform. 17, 847–848

    Article  CAS  Google Scholar 

  6. Conesa A, et al (2005) Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinform. 21, 3674–3676

    Article  CAS  Google Scholar 

  7. Götz S, et al (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucl. Acid. Res. 36, 3420–3435

    Article  Google Scholar 

  8. Altschul SF, et al (1990) Basic Local Alignment Search Tool. J. Mol. Biol. 215, 403–410

    PubMed  CAS  Google Scholar 

  9. Nielsen H, et al (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6

    Article  PubMed  CAS  Google Scholar 

  10. Bendtsen JD, et al (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795

    Article  PubMed  Google Scholar 

  11. Käll L, Krogh A and Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338, 1027–1036

    Article  PubMed  Google Scholar 

  12. Horton P, et al (2007) WoLF PSORT: protein localization predictor. Nucl. Acid. Res. 35, 585–587

    Article  Google Scholar 

  13. Emanuelsson O, et al (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protocol. 2, 953–971

    Article  CAS  Google Scholar 

  14. Nakai K and Horton P (2007) Computational prediction of subcellular localization. Method. in Mol Biol. 390, 429–466

    Article  CAS  Google Scholar 

  15. de Jonge R, et al (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329, 953–955

    Article  PubMed  Google Scholar 

  16. Krogh A et al (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567–580

    Article  PubMed  CAS  Google Scholar 

  17. Käll L, Krogh A and Sonnhammer ELL (2007) Advantages of combined transmembrane topo­logy and signal peptide prediction--the Phobius web server. Nucl. Acid. Res. 35, 429–432

    Article  Google Scholar 

  18. Horton P and Nakai K (1999) Psort: a program for detecting sorting signals in proteins and determining their subcellular localization. TIBS 24, 34–xx

    Google Scholar 

  19. Nakai K and Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 879–911

    Article  Google Scholar 

  20. Bannai H, et al (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinform.18, 298–305

    Google Scholar 

  21. Casadio R, Martelli PL and Pierleoni A (2008) The prediction of protein subcellular localization from sequence: a shortcut to functional genome annotation. Brief. Func. Genom. Proteom. 7, 63–73

    Article  CAS  Google Scholar 

  22. Hawkings J and Boden M (2006) Detecting and sorting targeting peptides with neural networks and support vector machines. J. Bioinform. Comput. Biol. 4, 1–18

    Article  Google Scholar 

  23. Nair R and Rost B (2005) Mimicking cellular sorting improves prediction of subcelluar localization. J. Mol. Biol. 348, 85–100

    Article  PubMed  CAS  Google Scholar 

  24. Pierleoni A, et al (2006) BaCelLo: a balanced subcellular localization predictor. Bioinform. 22, 408–416

    Article  Google Scholar 

  25. Klee EW and Sosa CP (2007) Computational classification of classically secreted proteins. Drug. Discov. Today 12, 234–240

    Article  PubMed  CAS  Google Scholar 

  26. Klosterman S, et al (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog 7: e1002137

    Article  PubMed  CAS  Google Scholar 

  27. van den Wymelenberg A, et al (2006) Computa-tional analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet. Biol. 43, 343–356

    Article  Google Scholar 

  28. Lee SA, et al (2003) An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms. Yeast 20, 595–610

    Article  PubMed  CAS  Google Scholar 

  29. Choi J, et al (2010) Fungal secretome database: Integrated platform for annotation of fungal secretomes. BMC Genomics 11, 105–119

    Article  PubMed  Google Scholar 

  30. Lum G and Min XJ (2011) FunSecKB: the fungal secretome knowledgebase. Databases (Oxford) 2011, bar001

    Google Scholar 

  31. Cantarel BL, et al (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucl. Acid. Res. 37, 233–238

    Article  Google Scholar 

  32. Winnenburg R, et al (2006) PHI-base: a new database for pathogen host interactions. Nucl. Acid. Res. 34, 459–464

    Article  Google Scholar 

  33. Rep M (2005) Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiol. Lett. 253, 19–27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Vidi grant of the Research Council for Earth and Life Sciences (ALW) of the Netherlands Organization for Scientific Research (NWO), by the European Research Area–Network (ERA-NET) Plant Genomics and by the Centre for BioSystems Genomics (CBSG), which is part of the Netherlands Genomics Initiative and NWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronnie de Jonge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

de Jonge, R. (2012). In Silico Identification and Characterization of Effector Catalogs. In: Bolton, M., Thomma, B. (eds) Plant Fungal Pathogens. Methods in Molecular Biology, vol 835. Humana Press. https://doi.org/10.1007/978-1-61779-501-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-501-5_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-500-8

  • Online ISBN: 978-1-61779-501-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics