Skip to main content

An Animal Model to Study the Molecular Basis of Tardive Dyskinesia

  • Protocol
  • First Online:
Psychiatric Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 829))

Abstract

Long-term treatment with haloperidol is associated with a number of extrapyramidal side effects. This limitation presents a marked therapeutic challenge. The present method (21 days administration of haloperidol, 5 mg/kg, i.p.) has been established to gain deeper insight into the molecular etiology (inflammation and apoptosis) of haloperidol-induced cellular death. In the present model, besides the corresponding increase in the vacuous chewing movements (VCMs), enhanced oxidative stress, there was a significant increase in cellular markers of inflammation and apoptotic protein (caspase-3), leading to cellular death. We also suggest that this model will be effective in preclinical testing of new chemical entities for the treatment of haloperidol induced tardive dyskinesia and related symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Creese, I., Burt, D., Snyder, S.H. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 192,481–483.

    Article  PubMed  CAS  Google Scholar 

  2. Walker, J.M., Bowen, W.D., Walker, F.O., Matsumoto, R.R., De Costa, B., Rice, C.K. (1990) Sigma receptors: biology and function. Pharmacol. Rev. 42,355–402.

    PubMed  CAS  Google Scholar 

  3. Vilner, B.J., Costa, B.R., Bowen, W.D. (1995) Cytotoxic effects of sigma ligands: Sigma receptor-mediated alterations in cellular morphology and viability. J Neurosci. 15,117–134.

    PubMed  CAS  Google Scholar 

  4. Meshul, C.K. and Tan, S.E, (1994) Haloperidol-induced morphological alterations are associated with changes in calcium/calmodulin kinase II activity and the glutamate immunoreactivity. Synapse. 18, 205–217.

    Article  PubMed  CAS  Google Scholar 

  5. Halliday, G.M., Pond, S.M., Cartwright, H., McRitchie, D.A., Castagnoli, N., Van der Shyf, C.J. (1999) Clinical and neuropathological abnormalities in baboons treated with HPTP, tetrahydropyridine analog of haloperidol. Exp. Neurol. 158,155–163.

    Article  PubMed  CAS  Google Scholar 

  6. Post, A., Rücker, M., Ohl, F., Uhr, M., Holsboer, F., Almeida, O.F., Michaelidis, T.M. (2002) Mechanisms underlying the protective potential of alpha-tocopherol (vitamin E) against haloperidol-associated neurotoxicity. Neuropsychopharmacology. 26, 397–407.

    Article  PubMed  CAS  Google Scholar 

  7. Sagara, Y. (1998) Induction of reactive oxygen species in neurons by haloperidol. J. Neurochem. 71,1002–1012.

    Article  PubMed  CAS  Google Scholar 

  8. Lohr, J.B., Cadet, J.L., Lohr, M.A., Larson, L., Wasli, E., Wade, L., Hylton, R., Vidoni, C., Jeste, D.V., Wyatt, R.J. (1988) Vitamin E in the treatment of tardive dyskinesia: The possible involvement of free radical mechanism, Schizophr. Bull. 14,291–296.

    PubMed  CAS  Google Scholar 

  9. Wills, E.D. (1966) Mechanism of lipid peroxide formation in animal tissues. Biochem. Jour. 99, 667–676.

    CAS  Google Scholar 

  10. Babior, B.M., Kipner, R.S., Cerutte, J.T. (1973) Biological defense mechanism. The production by leukocytes of superoxide, a potential bacterial agent. J. Clin. Investigation. 52,741–744.

    Article  CAS  Google Scholar 

  11. Ellman, G.L. (1959) Tissue sulfhydryl groups. Arch. of Biochemi. Biophy. 82, 70–77.

    Article  CAS  Google Scholar 

  12. Lowry, O.H. (1951) Protein measurements with the Folin-phenol reagent. J. Biol. Chem. 193, 265–275

    PubMed  CAS  Google Scholar 

  13. Bishnoi, M., Chopra, K., Kulkarni, S.K. (2007) Possible anti-oxidant and neuroprotective mechanisms of zolpidem in attenuating typical anti-psychotic-induced orofacial dyskinesia-A biochemical and neurochemical study.Prog. Neuropsychopharmacol. Biol. Psychiatry. 31,1130–1138.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Professor S.K. Kulkarni and Dr. Kanwaljit Chopra for their guidance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Bishnoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bishnoi, M., Boparai, R.K. (2012). An Animal Model to Study the Molecular Basis of Tardive Dyskinesia. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 829. Humana Press. https://doi.org/10.1007/978-1-61779-458-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-458-2_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-457-5

  • Online ISBN: 978-1-61779-458-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics