Skip to main content

Synthesis of Genetically Engineered Protein Polymers (Recombinamers) as an Example of Advanced Self-Assembled Smart Materials

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 811))

Abstract

In this chapter, we describe two methods for bio-producing recombinant repetitive polypeptide polymers for use in biomedical devices. These polymers, known as elastin-like recombinamers (ELRs), are derived from the repetition of selected amino acid domains of extracellular matrix proteins with the aim of recreating their mechanical and physiological features. The proteinaceous nature of ELRs allows us to make use of the natural biosynthetic machinery of heterologous hosts to express advanced and large polymers or “recombinamers.” Despite the essentially unlimited possibilities for designing recombinamers, the production of synthetic genes to encode them should allow us to overcome the difficulties surrounding bioproduction of these non-natural monotonous DNA and protein sequences. The aim of this work is to supply the biotechnologist with fine-tuning methods to biosynthesize advanced self-assembled smart materials.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rodríguez-Cabello, J. C., Reguera, J., Girotti, A., Arias, F. J., and Alonso, M. (2006) Genetic Engineering of Protein-Based Polymers: The Example of Elastin-like Polymers, Advances in Polymer Science 200, 119–167.

    Article  Google Scholar 

  2. Arias, F. J., Reboto, V., Martin, S., Lopez, I., and Rodriguez-Cabello, J. C. (2006) Tailored recombinant elastin-like polymers for advanced biomedical and nano(bio)technological applications, Biotechnol Lett 28, 687–695.

    Article  CAS  Google Scholar 

  3. Rodríguez-Cabello, J. C., Reguera, J., Girotti, A., Alonso, M., and Testera, A. M. (2005) Developing functionality in elastin-like polymers by increasing their molecular complexity: the power of the genetic engineering approach, Progress in Polymer Science 30, 1119–1145.

    Article  Google Scholar 

  4. Rodriguez-Cabello, J. C., Prieto, S., Reguera, J., Arias, F. J., and Ribeiro, A. (2007) Biofunctional design of elastin-like polymers for advanced applications in nanobiotechnology, J Biomater Sci Polym Ed 18, 269–286.

    Article  CAS  Google Scholar 

  5. Girotti, A., Reguera, J., Rodríguez-Cabello, J. C., Arias, F. J., Alonso, M., and Testera, A. M. (2004) Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes, Journal of Materials Science-Materials in Medicine 15, 479–484.

    Article  CAS  Google Scholar 

  6. Mould, A. P., Wheldon, L. A., Komoriya, A., Wayner, E. A., Yamada, K. M., and Humphries, M. J. (1990) Affinity Chromatographic Isolation of the Melanoma Adhesion Receptor for the Iiics Region of Fibronectin and Its Identification as the Integrin-Alpha-4-Beta-1, J. Biol. Chem. 265, 4020–4024.

    CAS  Google Scholar 

  7. Plouffe, B. D., Njoka, D. N., Harris, J., Liao, J., Horick, N. K., Radisic, M., and Murthy, S. K. (2007) Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow, Langmuir 23, 5050–5055.

    Article  CAS  Google Scholar 

  8. Lombard, C., Bouchu, D., Wallach, J., and Saulnier, J. (2005) Proteinase 3 hydrolysis of peptides derived from human elastin exon 24, Amino Acids 28, 403–408.

    Article  CAS  Google Scholar 

  9. Park, C., Yoon, J., and Thomas, E. L. (2003) Enabling nanotechnology with self assembled block copolymer patterns, Polymer 44, 6725–6760.

    Article  CAS  Google Scholar 

  10. Mortensen, K. (1998) Structural properties of self-assembled polymeric micelles, Current Opinion in Colloid & Interface Science 3, 12–19.

    Article  CAS  Google Scholar 

  11. Wright, E. R., and Conticello, V. P. (2002) Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences, Advanced Drug Delivery Reviews 54, 1057–1073.

    Article  CAS  Google Scholar 

  12. Mandal, B. B., and Kundu, S. C. (2009) Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery, Nanotechnology 20.

    Google Scholar 

  13. McMillan, R. A., Lee, T. A. T., and Conticello, V. P. (1999) Rapid assembly of synthetic genes encoding protein polymers, Macromolecules 32, 3643–3648.

    Article  CAS  Google Scholar 

  14. Won, J. I., and Barron, A. E. (2002) A new cloning method for the preparation of long repetitive polypeptides without a sequence requirement, Macromolecules 35, 8281–8287.

    Article  CAS  Google Scholar 

  15. Sorensen, M. A., Kurland, C. G., and Pedersen, S. (1989) Codon Usage Determines Translation Rate in Escherichia coli, J Mol Biol 207, 365–377.

    Article  CAS  Google Scholar 

  16. Tats, A., Tenson, T., and Remm, M. (2008) Preferred and avoided codon pairs in three domains of life, BMC Genomics 9, 463.

    Article  Google Scholar 

  17. Ribeiro, A., Arias, F. J., Reguera, J., Alonso, M., and Rodriguez-Cabello, J. C. (2009) Influence of the Amino-Acid Sequence on the Inverse Temperature Transition of Elastin-Like Polymers, Biophysical Journal 97, 312–320.

    Article  CAS  Google Scholar 

  18. Liu, J. C., and Tirrell, D. A. (2008) Cell response to RGD density in cross-linked artificial extracellular matrix protein films, Biomacromolecules 9, 2984–2988.

    Article  CAS  Google Scholar 

  19. McHale, M. K., Setton, L. A., and Chilkoti, A. (2005) Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair, Tissue Engineering 11, 1768–1779.

    Article  CAS  Google Scholar 

  20. Martin, L., Alonso, M., Girotti, A., Arias, F. J., and Rodriguez-Cabello, J. C. (2009) Synthesis and Characterization of Macroporous Thermosensitive Hydrogels from Recombinant Elastin-Like Polymers, Biomacromolecules. 10 (11), 3015–3022.

    Article  CAS  Google Scholar 

  21. Rodríguez-Cabello, J. C., Martín, L., Alonso, M., Arias, F. J., and Testera, A. M. (2009) “Recombinamers” as advanced materials for the post-oil age, Polymer 50, 5159–5169.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from the MICINN (projects MAT 2007-66275-C02-01 and PSE-300100-2006-1), the JCyL (projects VA034A09, VA016B08, and VA030A08), the CIBER-BBN (project CB06-01-0003), the JCyL, and the Instituto de Salud Carlos III under the “Network Center of Regenerative Medicine and Cellular Therapy of Castilla and Leon.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Rodríguez-Cabello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rodríguez-Cabello, J.C., Girotti, A., Ribeiro, A., Arias, F.J. (2012). Synthesis of Genetically Engineered Protein Polymers (Recombinamers) as an Example of Advanced Self-Assembled Smart Materials. In: Navarro, M., Planell, J. (eds) Nanotechnology in Regenerative Medicine. Methods in Molecular Biology, vol 811. Humana Press. https://doi.org/10.1007/978-1-61779-388-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-388-2_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-387-5

  • Online ISBN: 978-1-61779-388-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics