Skip to main content

Human Dendritic Cell Culture and Bacterial Infection

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 799))

Abstract

Dendritic cells (DC) play a key role in the development of natural immunity to microbes. The DC form a bridge between the innate and adaptive immune system by providing key instructions particularly to antigen naïve T-cells. The interaction of DC with T lymphocytes involves three signals: (1) antigen processing and presentation in context of MHC Class I and/or II, (2) expression of T cell co-stimulatory molecules, and (3) cytokine production. Studying the interactions of DCs with specific pathogens allows for better understanding of how protective immunity is generated, and may be particularly useful for assessing vaccine components. In this chapter, we describe methods to generate human monocyte-derived DCs and assess their maturation, activation, and function, using interaction with the gram-negative bacterial pathogen Neisseria meningitidisas a model.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Banchereau J, Briere F, Caux C et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811.

    Article  CAS  Google Scholar 

  2. Takeuchi O, Akira A (2010) Pattern recognition receptors and inflammation. Cell 140: 805–20.

    Article  CAS  Google Scholar 

  3. Murphy K M, Stockinger B (2010) Effector T cell plasticity: flexibility in the face of changing circumstances. Nature Immunol 11: 674680.

    Article  CAS  Google Scholar 

  4. Coquerelle C, Mosser M (2010) DC subsets in positive and negative regulation of immunity. Immunol Rev 234: 317–34.

    Article  CAS  Google Scholar 

  5. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and down-regulated by tumor necrosis factor-alpha. J Exp Med 179:1109–1118.

    Article  CAS  Google Scholar 

  6. Caux C, Dezutter-Dambuyant C, Schmitt D et al (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360:258 –261.

    Article  CAS  Google Scholar 

  7. Bernard H, Disis ML, Heimfeld S et al (1995) Generation of immunostimulatory dendritic cells from human CD34+ hematopoietic progenitor cells of the bone marrow. Cancer Res 55:1099–1104.

    Google Scholar 

  8. Paczesny S, Li Y, Li N et al (2007) Effcient generation of CD34+ progenitor-derived dendritic cells from G-CSF-mobilized peripheral mononuclear cells does not require hematopoietic stem cell enrichment. J Leuk Biol 81: 957–67.

    Article  CAS  Google Scholar 

  9. Ueno H, Schmitt H, Klechevsky E et al (2010) Harnessing human dendritic cell subsets for medicine. Immunol Rev 234:199–212.

    Article  CAS  Google Scholar 

  10. Connolly NC, Whiteside TL, Wilson C et al (2008) Therapeutic immunization with human immunodeficiency virus type 1 (HIV-1) peptide-loaded dendritic cell is safe and induces immunogenicity in HIV-1 infected individuals. Clin Vac Immunol 15:284–292.

    Article  CAS  Google Scholar 

  11. Villcock A, Schmitt C, Schielke S et al (2008) Recognition via the class A scavenger receptor modulates cytokines secretion by human dendritic cells after contact with Neisseria meningitidis. Microbes Infect 10: 10–11.

    Google Scholar 

  12. Jones H E, Uronen-Hansson H, Callard RE et al (2008) The differential response of human dendritic cells to live and killed Neisseria meningitidis. Cell Microbiol 9:2856–2869.

    Article  Google Scholar 

  13. Steeghs L, van Vliet SJ, Uronen-Hansson H et al (2006) Neisseria meningitidisexpressing lgtB lipopolysacccharide targets DC-SIGN and modulates dendritic cell function. Cell Microbiol 8:316–25.

    Article  CAS  Google Scholar 

  14. Kurzai O, Schmitt C, Claus H et al (2005) Carbohydrate composition of meningococcal lipopolysaccharide modulates the interaction of Neisseria meningitidiswith human dendritic cells. Cell Microbiol 7:1319–1334.

    Article  CAS  Google Scholar 

  15. Al Bader T, Jolley KA, Humphries HE et al (2004) Activation of human dendritic cells by the PorA protein of Neisseria meningitidis. Cell Microbiol 6:651–662.

    Article  CAS  Google Scholar 

  16. Uronen-Hansson H, Steeghs L, Allen J et al (2004) Human dendritic cell activation by Neisseria meningitidis: phagocytosis depends on expression of lipooligosaccharide (LOS) by the bacteria and is required for optimal cytokine production. Cell Microbiol 6:625–637.

    Article  CAS  Google Scholar 

  17. Al Bader T, Christodoulides M, Heckels JE et al (2003) Activation of human dendritic cells is modulated by components of the outer membranes of Neisseria meningitidis. Infect Immun 71: 5590–5597.

    Article  CAS  Google Scholar 

  18. Unkmeir A, Kammerer U, Stade A et al (2002) Lipooligosaccharide and polysaccharide capsule: virulence factors of Neisseria meningitidisthat determine meningococcal interaction with human dendritic cells. Infect Immun 70: 2454–2462.

    Article  CAS  Google Scholar 

  19. Kolb-Maurer A, Unkmeir A, Kammerer U et al (2001) Interaction of Neisseria meningitidiswith human dendritic cells. Infect. Immun.69, 6912–6922.

    Article  CAS  Google Scholar 

  20. Dixon GL, Newton PJ, Chain BM et al (2001) Dendritic cell activation and cytokine production induced by group B Neisseria meningitidis: interleukin-12 production depends on lipopolysaccharide expression in intact bacteria. Infect Immun 69:4351–4357.

    Article  CAS  Google Scholar 

  21. de Jong EC, Vieira PJ, Kalinski P et al (2002) Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse Th cell-polarising signals. J Immunol 168:17041709.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Meningitis Research Foundation for their financial support. The authors would also like to thank Professor Robin Callard, Dr Heli Uronen-Hansson, and Dr Jenny Allen for their roles in the development of these assays in the Infectious Diseases and Microbiology and Immunobiology Units at the Institute of Child Health, London, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah E. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jones, H.E., Klein, N., Dixon, G.L.J. (2012). Human Dendritic Cell Culture and Bacterial Infection. In: Christodoulides, M. (eds) Neisseria meningitidis. Methods in Molecular Biology, vol 799. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-61779-346-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-346-2_14

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-61779-345-5

  • Online ISBN: 978-1-61779-346-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics