Skip to main content

Evaluation of Innate Immune Signaling Pathways in Transformed Cells

  • Protocol
  • First Online:
Book cover Oncolytic Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 797))

Abstract

Oncolytic viruses, the use of viruses to treat cancer, is emerging as a new option for cancer therapy. Oncolytic viruses, of both DNA and RNA origin, exhibit the ability to preferentially replicate in and kill cancer cells plausibly due to defects in innate immune signaling or translation regulation that are acquired during cellular transformation. Here, we review concepts and assays that describe how to analyze signaling pathways that govern the regulation of Type I IFN production as well as the induction of interferon-stimulated antiviral genes, events that are critical for mounting an effective antiviral response. The following procedures can be used to assess whether innate immune pathways that control antiviral host defense are defective in tumor cells – mechanisms that may help to explain viral oncolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barber GN. (2004) Vesicular stomatitis virus as an oncolytic vector Viral Immunol17, 516–527.

    CAS  PubMed  Google Scholar 

  2. Barber GN. (2005) VSV-tumor selective replication and protein translation Oncogene24, 7710–7719.

    CAS  PubMed  Google Scholar 

  3. Choi MK, Wang Z, Ban T, Yanai H, Lu Y, et al. (2009) A selective contribution of the RIG-I-like receptor pathway to type I interferon responses activated by cytosolic DNA Proc Natl Acad Sci USA106, 17870–17875.

    CAS  PubMed  Google Scholar 

  4. Yoneyama M, Fujita T. (2009) RNA recognition and signal transduction by RIG-I-like receptors Immunol Rev227, 54–65.

    CAS  PubMed  Google Scholar 

  5. Blasius AL, Beutler B. (2010) Intracellular toll-like receptors Immunity32, 305–315.

    CAS  PubMed  Google Scholar 

  6. Obuchi M, Fernandez M, Barber GN. (2003) Development of recombinant vesicular stomatitis viruses that exploit defects in host defense to augment specific oncolytic activity Journal of Virology77, 8843–8856.

    CAS  PubMed  Google Scholar 

  7. Akira S, Uematsu S, Takeuchi O. (2006) Pathogen recognition and innate immunity Cell124, 783–801.

    CAS  PubMed  Google Scholar 

  8. Wang L, Ligoxygakis P. (2006) Pathogen recognition and signalling in the Drosophila innate immune response Immunobiology211, 251–261.

    CAS  PubMed  Google Scholar 

  9. Silverman N, Maniatis T. (2001) NF-kappaB signaling pathways in mammalian and insect innate immunity Genes & Development15, 2321–2342.

    CAS  Google Scholar 

  10. Leclerc V, Reichhart J-M. (2004) The immune response of Drosophila melanogaster Immunol Rev198, 59–71.

    CAS  PubMed  Google Scholar 

  11. Gottar M, Gobert V, Michel T, Belvin M, Duyk G, et al. (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein Nature416, 640–644.

    CAS  PubMed  Google Scholar 

  12. Kawai T, Akira S. (2008) Toll-like receptor and RIG-I-like receptor signaling Ann N Y Acad Sci1143, 1–20.

    CAS  PubMed  Google Scholar 

  13. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3 Nature413, 732–738.

    Article  CAS  PubMed  Google Scholar 

  14. Taura M, Eguma A, Suico MA, Shuto T, Koga T, et al. (2008) p53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines Molecular and Cellular Biology28, 6557–6567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lande R, Gilliet M. (2010) Plasmacytoid dendritic cells: key players in the initiation and regulation of immune responses Ann N Y Acad Sci1183, 89–103.

    CAS  PubMed  Google Scholar 

  16. Martinez J, Huang X, Yang Y. (2010) Toll-like receptor 8-mediated activation of murine plasmacytoid dendritic cells by vaccinia viral DNA Proceedings of the National Academy of Sciences107, 6442–6447.

    Article  CAS  Google Scholar 

  17. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, et al. (2000) A Toll-like receptor recognizes bacterial DNA Nature408, 740–745.

    CAS  PubMed  Google Scholar 

  18. Kawai T, Akira S. (2007) Antiviral signaling through pattern recognition receptors Journal of Biochemistry141, 137–145.

    CAS  PubMed  Google Scholar 

  19. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, et al. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor ­signaling pathway Science301, 640–643.

    Article  CAS  PubMed  Google Scholar 

  20. Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, et al. (2006) Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response Nature439, 208–211.

    Article  CAS  PubMed  Google Scholar 

  21. Seya T, Shime H, Ebihara T, Oshiumi H, Matsumoto M. (2010) Pattern recognition receptors of innate immunity and their application to tumor immunotherapy. Cancer Sci 101(2), 313–320.

    Article  CAS  PubMed  Google Scholar 

  22. Kawai T, Akira S. (2007) TLR signaling Seminars in Immunology19, 24–32.

    Article  CAS  PubMed  Google Scholar 

  23. Hornung V, Schlender J, Guenthner-Biller M, Rothenfusser S, Endres S, et al. (2004) Replication-dependent potent IFN-alpha induction in human plasmacytoid dendritic cells by a single-stranded RNA virus J Immunol173, 5935–5943.

    CAS  PubMed  Google Scholar 

  24. Uematsu S, Akira S. (2006) Toll-like receptors and innate immunity J Mol Med84, 712–725.

    CAS  PubMed  Google Scholar 

  25. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, et al. (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses Nature434, 772–777.

    Article  CAS  PubMed  Google Scholar 

  26. Yoneyama M, Fujita T. (2007) RIG-I family RNA helicases: cytoplasmic sensor for antiviral innate immunity Cytokine & Growth Factor Reviews18, 545–551.

    CAS  Google Scholar 

  27. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, et al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses Nature441, 101–105.

    Article  CAS  PubMed  Google Scholar 

  28. Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, et al. (2006) 5’-Triphosphate RNA is the ligand for RIG-I Science314, 994–997.

    Article  PubMed  Google Scholar 

  29. Scott I, Norris KL. (2008) The mitochondrial antiviral signaling protein, MAVS, is cleaved during apoptosis Biochemical and Biophysical Research Communications375, 101–106.

    Article  CAS  PubMed  Google Scholar 

  30. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, et al. (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus Nature437, 1167–1172.

    CAS  PubMed  Google Scholar 

  31. Sharma S, tenOever BR, Grandvaux N, Zhou G-P, Lin R, et al. (2003) Triggering the interferon antiviral response through an IKK-related pathway Science300, 1148–1151.

    CAS  PubMed  Google Scholar 

  32. Balachandran S, Thomas E, Barber GN. (2004) A FADD-dependent innate immune mechanism in mammalian cells Nature432, 401–405.

    CAS  PubMed  Google Scholar 

  33. Balachandran S, Venkataraman T, Fisher PB, Barber GN. (2007) Fas-associated death domain-containing protein-mediated antiviral innate immune signaling involves the regulation of Irf7 J Immunol178, 2429–2439.

    Article  CAS  PubMed  Google Scholar 

  34. Martin D, Gutkind JS. (2008) Human tumor-associated viruses and new insights into the molecular mechanisms of cancer Oncogene27Suppl2, S31–42.

    Article  CAS  PubMed  Google Scholar 

  35. Stetson DB, Medzhitov R. (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response Immunity24, 93–103.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Z, Choi MK, Ban T, Yanai H, Negishi H, et al. (2008) Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules Proc Natl Acad Sci USA105, 5477–5482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ishikawa H, Barber GN. (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling Nature455, 674–678.

    CAS  PubMed  Google Scholar 

  38. Ishikawa H, Ma Z, Barber GN. (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity Nature461, 788–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Constantinescu SN, Girardot M, Pecquet C. (2008) Mining for JAK-STAT mutations in cancer Trends Biochem Sci33, 122–131.

    Article  CAS  PubMed  Google Scholar 

  40. Zou W, Kim J-H, Handidu A, Li X, Kim KI, et al. (2007) Microarray analysis reveals that Type I interferon strongly increases the expression of immune-response related genes in Ubp43 (Usp18) deficient macrophages Biochemical and Biophysical Research Communications356, 193–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Platanias LC, Fish EN. (1999) Signaling pathways activated by interferons Exp Hematol27, 1583–1592.

    CAS  PubMed  Google Scholar 

  42. Darnell JE. (1997) STATs and gene regulation Science277, 1630–1635.

    CAS  PubMed  Google Scholar 

  43. Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, et al. (2006) Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity Immunity25: 745–755.

    Article  CAS  PubMed  Google Scholar 

  44. Schindler C, Levy DE, Decker T. (2007) JAK-STAT signaling: from interferons to cytokinesJ Biol Chem282, 20059–20063.

    CAS  PubMed  Google Scholar 

  45. Platanias LC. (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling Nat Rev Immunol5, 375–386.

    Article  CAS  PubMed  Google Scholar 

  46. Joshi S, Kaur S, Kroczynska B, Platanias LC. (2010) Mechanisms of mRNA translation of interferon stimulated genes. Cytokine.

    Google Scholar 

  47. Balachandran S, Barber GN. (2004) Defective translational control facilitates vesicular stomatitis virus oncolysis Cancer Cell5, 51–65.

    CAS  PubMed  Google Scholar 

  48. Pfeifer I, Elsby R, Fernandez M, Faria PA, Nussenzveig DR, et al. (2008) NFAR-1 and -2 modulate translation and are required for efficient host defense Proc Natl Acad Sci USA105, 4173–4178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Colina R, Costa-Mattioli M, Dowling RJO, Jaramillo M, Tai L-H, et al. (2008) Translational control of the innate immune response through IRF-7 Nature452, 323–328.

    Article  CAS  PubMed  Google Scholar 

  50. Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, et al. (2003) Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence Nature424, 516–523.

    Article  CAS  PubMed  Google Scholar 

  51. Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, et al. (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism Nature449, 919–922.

    CAS  PubMed  Google Scholar 

  52. Ohno M, Natsume A, Kondo Y, Iwamizu H, Motomura K, et al. (2009) The modulation of microRNAs by type I IFN through the activation of signal transducers and activators of transcription 3 in human glioma Mol Cancer Res7, 2022–2030.

    Article  CAS  PubMed  Google Scholar 

  53. Jarmalaite S, Andrekute R, Scesnaite A, Suziedelis K, Husgafvel-Pursiainen K, et al. (2010) Promoter hypermethylation in tumour suppressor genes and response to interleukin-2 treatment in bladder cancer: a pilot study J Cancer Res Clin Oncol136, 847–854.

    Article  CAS  PubMed  Google Scholar 

  54. Marozin S, Altomonte J, Stadler F, Thasler WE, Schmid RM, et al. (2008) Inhibition of the IFN-beta response in hepatocellular carcinoma by alternative spliced isoform of IFN regulatory factor-3 Mol Ther16, 1789–1797.

    Article  CAS  PubMed  Google Scholar 

  55. Jee CD, Kim MA, Jung EJ, Kim J, Kim WH. (2009) Identification of genes epigenetically silenced by CpG methylation in human gastric carcinoma Eur J Cancer45, 1282–1293.

    CAS  PubMed  Google Scholar 

  56. Almeida S, Maillard C, Itin P, Hohl D, Huber M. (2008) Five new CYLD mutations in skin appendage tumors and evidence that aspartic acid 681 in CYLD is essential for deubiquitinase activity J Invest Dermatol128, 587–593.

    Article  CAS  PubMed  Google Scholar 

  57. Critchley-Thorne RJ, Yan N, Nacu S, Weber J, Holmes SP, et al. (2007) Down-regulation of the interferon signaling pathway in T lymphocytes from patients with metastatic melanoma PLoS Med4, e176.

    Google Scholar 

  58. Pansky A, Hildebrand P, Fasler-Kan E, Baselgia L, Ketterer S, et al. (2000) Defective Jak-STAT signal transduction pathway in melanoma cells resistant to growth inhibition by interferon-alpha Int J Cancer85, 720–725.

    CAS  PubMed  Google Scholar 

  59. Mullighan CG, Zhang J, Harvey RC, Collins-Underwood JR, Schulman BA, et al. (2009) JAK mutations in high-risk childhood acute lymphoblastic leukemia Proc Natl Acad Sci USA106, 9414–9418.

    CAS  PubMed  Google Scholar 

  60. van Eyndhoven WG, Gamper CJ, Cho E, Mackus WJ, Lederman S. (1999) TRAF-3 mRNA splice-deletion variants encode isoforms that induce NF-kappaB activation Molecular Immunology36, 647–658.

    Article  PubMed  Google Scholar 

  61. Nagel I, Bug S, Tönnies H, Ammerpohl O, Richter J, et al. (2009) Biallelic inactivation of TRAF3 in a subset of B-cell lymphomas with interstitial del(14)(q24.1q32.33) Leukemia23, 2153–2155.

    Article  CAS  PubMed  Google Scholar 

  62. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, et al. (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 Nature462, 108–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen N. Barber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Heiber, J.F., Barber, G.N. (2012). Evaluation of Innate Immune Signaling Pathways in Transformed Cells. In: Kirn, D., Liu, TC., Thorne, S. (eds) Oncolytic Viruses. Methods in Molecular Biology, vol 797. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-61779-340-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-340-0_15

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-61779-339-4

  • Online ISBN: 978-1-61779-340-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics