Skip to main content

Synchronization of Yeast

  • Protocol
  • First Online:
Cell Cycle Synchronization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 761))

Abstract

The budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe are amongst the simplest and most powerful model systems for studying the genetics of cell cycle control. Because yeast grows very rapidly in simple and economical media, large numbers of cells can easily be obtained for genetic, molecular, and biochemical studies of the cell cycle. The use of synchronized cultures greatly aids in the ease and interpretation of cell cycle studies. In principle, there are two general methods for obtaining synchronized yeast populations. Block and release methods can be used to induce cell cycle synchrony. Alternatively, centrifugal elutriation can be used to select synchronous populations. Because each method has innate advantages and disadvantages, the use of multiple approaches helps in generalizing results. An overview of the most commonly used methods to generate synchronized yeast cultures is presented along with working Notes, a section that includes practical comments, experimental considerations and observations, and hints regarding the pros and cons innate to each approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forsburg, S. L. (2003) Overview of Schizosaccharomyces pombe, Curr Protoc Mol Biol Chapter 13, Unit 13 14.

    Google Scholar 

  2. Forsburg, S. L. (2005) The yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe: models for cell biology research, Gravit Space Biol Bull 18, 3–9.

    PubMed  Google Scholar 

  3. Sherman, F. (2002) Getting started with yeast, Methods Enzymol 350, 3–41.

    Article  PubMed  CAS  Google Scholar 

  4. Forsburg, S. L., and Rhind, N. (2006) Basic methods for fission yeast, Yeast (Chichester, England) 23, 173–183.

    Article  CAS  Google Scholar 

  5. Broach, J. R., Pringle, J. R., and Jones, E. W. (1991) The Molecular and Cellular Biology of the Yeast Saccharomyces, Cole Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  6. Guthrie, C., and Fink, G. R. (1991) Guide to Yeast Genetics and Molecular Biology, Vol. 194, Academic, Pasadena, CA.

    Google Scholar 

  7. Murray, A. W., and Hunt, T. (1993) The Cell Cycle: An Introduction, W.H. Freeman, New York, NY.

    Google Scholar 

  8. Jorgensen, P., and Tyers, M. (2004) How cells coordinate growth and division, Curr Biol 14, R1014–R1027.

    Article  PubMed  CAS  Google Scholar 

  9. Schneider, B. L., Zhang, J., Markwardt, J., Tokiwa, G., Volpe, T., Honey, S., and Futcher, B. (2004) Growth rate and cell size modulate the synthesis of, and requirement for, G1 phase cyclins at start, Mol Cell Biol 24, 10802–10813.

    Article  PubMed  CAS  Google Scholar 

  10. Fantes, P., and Brooks, R. (1993) The Cell Cycle: A Practical Approach, IRL Press; Oxford University Press, Oxford; New York.

    Google Scholar 

  11. Johnston, J. R. (1994) Molecular Genetics of Yeast: A Practical Approach, IRL Press; Oxford University Press, Oxford; New York.

    Google Scholar 

  12. Gomez, E. B., and Forsburg, S. L. (2004) Analysis of the fission yeast Schizosaccharomyces pombe cell cycle, Methods Mol Biol (Clifton, NJ) 241, 93–111.

    Google Scholar 

  13. Green, M. D., Sabatinos, S. A., and Forsburg, S. L. (2009) Microscopy techniques to examine DNA replication in fission yeast, Methods Mol Biol (Clifton, NJ) 521, 463–482.

    CAS  Google Scholar 

  14. Humphrey, T., and Brooks, G. (2005) Cell Cycle Control: Mechanisms and Protocols, Humana, Totowa, NJ.

    Google Scholar 

  15. Lieberman, H. B. (2004) Cell Cycle Checkpoint Control Protocols, Humana, Totowa, NJ.

    Google Scholar 

  16. Luche, D. D., and Forsburg, S. L. (2009) Cell-cycle synchrony for analysis of S. pombe DNA replication, Methods Mol Biol (Clifton, NJ) 521, 437–448.

    CAS  Google Scholar 

  17. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D., and Futcher, B. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization, Mol Biol Cell 9, 3273–3297.

    PubMed  CAS  Google Scholar 

  18. Futcher, B. (1999) Cell cycle synchronization, Methods Cell Sci 21, 79–86.

    Article  PubMed  CAS  Google Scholar 

  19. Walker, G. M. (1999) Synchronization of yeast cell populations, Methods Cell Sci 21, 87–93.

    Article  PubMed  CAS  Google Scholar 

  20. Johnston, L. H., and Johnson, A. L. (1997) Elutriation of budding yeast, Methods Enzymol 283, 342–350.

    Article  PubMed  CAS  Google Scholar 

  21. Day, A., Schneider, C., and Schneider, B. L. (2004) Yeast cell synchronization, Methods Mol Biol (Clifton, NJ) 241, 55–76.

    Google Scholar 

  22. Sonoda, E. (2006) Synchronization of cells, Subcell Biochem 40, 415–418.

    PubMed  Google Scholar 

  23. Amon, A. (2002) Synchronization procedures, Methods Enzymol 351, 457–467.

    Article  PubMed  CAS  Google Scholar 

  24. Amberg, D. C., Burke, D., Strathern, J. N., and Cold Spring Harbor Laboratory. (2005) Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual, 2005 ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  25. Ausubel, F. M. (1987) Current Protocols in Molecular Biology, Greene Publishing Associates, Brooklyn, NY; Media, PA.

    Google Scholar 

  26. Futcher, B. (2002) Transcriptional regulatory networks and the yeast cell cycle, Curr Opin Cell Biol 14, 676–683.

    Article  PubMed  CAS  Google Scholar 

  27. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P. O., and Herskowitz, I. (1998) The transcriptional program of sporulation in budding yeast, Science (New York, NY) 282, 699–705.

    Article  CAS  Google Scholar 

  28. Primig, M., Williams, R. M., Winzeler, E. A., Tevzadze, G. G., Conway, A. R., Hwang, S. Y., Davis, R. W., and Esposito, R. E. (2000) The core meiotic transcriptome in budding yeasts, Nat Genet 26, 415–423.

    Article  PubMed  CAS  Google Scholar 

  29. Haase, S. B., and Reed, S. I. (2002) Improved flow cytometric analysis of the budding yeast cell cycle, Cell Cycle (Georgetown, TX) 1, 132–136.

    CAS  Google Scholar 

  30. Sabatinos, S. A., and Forsburg, S. L. (2009) Measuring DNA content by flow cytometry in fission yeast, Methods Mol Biol (Clifton, NJ) 521, 449–461.

    CAS  Google Scholar 

  31. Zhang, H., and Siede, W. (2004) Analysis of the budding yeast Saccharomyces cerevisiae cell cycle by morphological criteria and flow cytometry, Methods Mol Biol (Clifton, NJ) 241, 77–91.

    Google Scholar 

  32. Breeden, L. L. (1997) Alpha-factor synchronization of budding yeast, Methods Enzymol 283, 332–341.

    Article  PubMed  CAS  Google Scholar 

  33. Richardson, H. E., Wittenberg, C., Cross, F., and Reed, S. I. (1989) An essential G1 function for cyclin-like proteins in yeast, Cell 59, 1127–1133.

    Article  PubMed  CAS  Google Scholar 

  34. Schneider, B. L., Patton, E. E., Lanker, S., Mendenhall, M. D., Wittenberg, C., Futcher, B., and Tyers, M. (1998) Yeast G1 cyclins are unstable in G1 phase, Nature 395, 86–89.

    Article  PubMed  CAS  Google Scholar 

  35. Woldringh, C. L., Fluiter, K., and Huls, P. G. (1995) Production of senescent cells of Saccharomyces cerevisiae by centrifugal elutriation, Yeast (Chichester, England) 11, 361–369.

    Article  CAS  Google Scholar 

  36. Egilmez, N. K., Chen, J. B., and Jazwinski, S. M. (1990) Preparation and partial characterization of old yeast cells, J Gerontol 45, B9–B17.

    PubMed  CAS  Google Scholar 

  37. Day, A., Markwardt, J., Delaguila, R., Zhang, J., Purnapatre, K., Honigberg, S. M., and Schneider, B. L. (2004) Cell size and Cln-Cdc28 complexes mediate entry into meiosis by modulating cell growth, Cell Cycle (Georgetown, TX) 3, 1433–1439.

    Article  CAS  Google Scholar 

  38. Nachman, I., Regev, A., and Ramanathan, S. (2007) Dissecting timing variability in yeast meiosis, Cell 131, 544–556.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

B. L. S. has been supported by grants from NIH R01GM077874 and R01GM077874-04S1 and the Ted Nash Long Life Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandt L. Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Manukyan, A., Abraham, L., Dungrawala, H., Schneider, B.L. (2011). Synchronization of Yeast. In: Banfalvi, G. (eds) Cell Cycle Synchronization. Methods in Molecular Biology, vol 761. Humana Press. https://doi.org/10.1007/978-1-61779-182-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-182-6_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-181-9

  • Online ISBN: 978-1-61779-182-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics