Skip to main content

Supported Lipid Bilayers and DNA Curtains for High-Throughput Single-Molecule Studies

  • Protocol
  • First Online:
Book cover DNA Recombination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 745))

Abstract

Single-molecule studies of protein–DNA interactions continue to yield new information on numerous DNA processing pathways. For example, optical microscopy-based techniques permit the real-time observation of proteins that interact with DNA substrates, which in turn allows direct insight into reaction mechanisms. However, these experiments remain technically challenging and are limited by the paucity of stable chromophores and the difficulty of acquiring statistically significant observations. In this protocol, we describe a novel, high-throughput, nanofabricated experimental platform enabling real-time imaging of hundreds of individual protein–DNA complexes over hour timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamdan, S.M., Loparo, J.J., Takahashi, M., Richardson, C.C., and van Oijen, A.M. (2009) Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature 457, 336–339.

    Article  PubMed  CAS  Google Scholar 

  2. van Oijen, A.M. (2007) Single-molecule studies of complex systems: the replisome. Mol Biosyst 3, 117–125.

    Article  PubMed  Google Scholar 

  3. Perumal, S.K., Yue, H., Hu, Z., Spiering, M.M., and Benkovic, S.J. (2010) Single-molecule studies of DNA replisome function. Biochim Biophys Acta 1804, 1094–1112.

    PubMed  CAS  Google Scholar 

  4. Yao, N.Y., Georgescu, R.E., Finkelstein, J., and O’Donnell, M.E. (2009) Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression. Proc Natl Acad Sci USA 106, 13236–13241.

    Article  PubMed  CAS  Google Scholar 

  5. Bai, L., Santangelo, T.J., and Wang, M.D. (2006) Single-molecule analysis of RNA polymerase transcription. Annu Rev Biophys Biomol Struct 35, 343–360.

    Article  PubMed  CAS  Google Scholar 

  6. Hodges, C., Bintu, L., Lubkowska, L., Kashlev, M., and Bustamante, C. (2009) Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 325, 626–628.

    Article  PubMed  CAS  Google Scholar 

  7. Herbert, K.M., Greenleaf, W.J., and Block, S.M. (2008) Single-molecule studies of RNA polymerase: motoring along. Annu Rev Biochem 77, 149–176.

    Article  PubMed  CAS  Google Scholar 

  8. Finkelstein, I.J., and Greene, E.C. (2008) Single molecule studies of homologous recombination. Mol Biosyst 4, 1094–2104.

    Article  PubMed  CAS  Google Scholar 

  9. Spies, M., Amitani, I., Baskin, R.J., and Kowalczykowski, S.C. (2007) RecBCD enzyme switches lead motor subunits in response to chi recognition. Cell 131, 694–705.

    Article  PubMed  CAS  Google Scholar 

  10. Gorman, J., Chowdhury, A., Surtees, J.A., Shimada, J., Reichman, D.R., Alani, E., and Greene, E.C. (2007) Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. Mol Cell 28, 359–370.

    Article  PubMed  CAS  Google Scholar 

  11. Kwon, Y., Seong, C., Chi, P., Greene, E.C., Klein, H., and Sung, P. (2008) ATP-dependent chromatin remodeling by the Saccharomyces cerevisiae homologous recombination factor Rdh54. J Biol Chem 283, 10445–10452.

    Article  PubMed  CAS  Google Scholar 

  12. Visnapuu, M.L., and Greene, E.C. (2009) Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition. Nat Struct Mol Biol 16, 1056–1062.

    Article  PubMed  CAS  Google Scholar 

  13. Robertson, R.B., Moses, D.N., Kwon, Y., Chan, P., Zhao, W., Chi, P., Klein, H., Sung, P., and Greene, E.C. (2009) Visualizing the disassembly of S. cerevisiae Rad51 nucleoprotein filaments. J Mol Biol 388, 703–720.

    Article  PubMed  CAS  Google Scholar 

  14. Robertson, R.B., Moses, D.N., Kwon, Y., Chan, P., Chi, P., Klein, H., Sung, P., and Greene, E.C. (2009) Visualizing the disassembly of S. cerevisiae Rad51 nucleoprotein filaments. Proc Natl Acad Sci USA 106, 12688–12693.

    Article  PubMed  CAS  Google Scholar 

  15. Prasad, T.K., Yeykal, C.C., and Greene, E.C. (2006) Visualizing the assembly of human Rad51 filaments on double-stranded DNA. J Mol Biol 363, 713–728.

    Article  PubMed  CAS  Google Scholar 

  16. Gorman, J., Fazio, T., Wang, F., Wind, S., and Greene, E.C. (2009) Nanofabricated racks of aligned and anchored DNA substrates for single-molecule imaging. Langmuir 26, 1372–1379.

    Article  Google Scholar 

  17. Visnapuu, M.L., Fazio, T., Wind, S., and Greene, E.C. (2008) Parallel arrays of geometric nanowells for assembling curtains of DNA with controlled lateral dispersion. Langmuir 24, 11293–11299.

    Article  PubMed  CAS  Google Scholar 

  18. Fazio, T., Visnapuu, M.L., Wind, S., and Greene, E.C. (2008) DNA curtains and nanoscale curtain rods: high-throughput tools for single molecule imaging. Langmuir 24, 10524–10531.

    Article  PubMed  CAS  Google Scholar 

  19. Graneli, A., Yeykal, C.C., Prasad, T.K., and Greene, E.C. (2006) Organized arrays of individual DNA molecules tethered to supported lipid bilayers. Langmuir 22, 292–299.

    Article  PubMed  CAS  Google Scholar 

  20. Visnapuu, M.L., Duzdevich, D., and Greene, E.C. (2008) The importance of surfaces in single-molecule bioscience. Mol Biosyst 4, 394–403.

    Article  PubMed  CAS  Google Scholar 

  21. Groves, J.T., Ulman, N., and Boxer, S.G. (1997) Micropatterning fluid lipid bilayers on solid supports. Science 275, 651–653.

    Article  PubMed  CAS  Google Scholar 

  22. Richter, R.P., Bérat, R., and Brisson, A.R. (2006) Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22, 3497–3505.

    Article  PubMed  CAS  Google Scholar 

  23. Jaiswal, J.K., Mattoussi, H., Mauro, J.M., and Simon, S.M. (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21, 47–51.

    Article  PubMed  CAS  Google Scholar 

  24. Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H. (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4, 435–446.

    Article  PubMed  CAS  Google Scholar 

  25. Ebenstein, Y., Gassman, N., Kim, S., Kim, Y., Ho, S., Samuel, R., Michalet, X., and Weiss, S. (2009) Lighting up individual DNA binding proteins with quantum dots. Nano Lett 9, 1598–1603.

    Article  PubMed  CAS  Google Scholar 

  26. Pinaud, F., Michalet, X., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Iyer, G., and Weiss, S. (2006) Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27, 1679–1687.

    Article  PubMed  CAS  Google Scholar 

  27. Rasnik, I., McKinney, S.A., and Ha, T. (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3, 891–893.

    Article  PubMed  CAS  Google Scholar 

  28. Escude, C., Geron-Landre, B., Crut, A., and Desbiolles, P. (2009) Multicolor detection of combed DNA molecules using quantum dots. Methods Mol Biol 544, 357–366.

    Article  PubMed  CAS  Google Scholar 

  29. Thompson, R.E., Larson, D.R., and Webb, W.W. (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82, 2775–2783.

    Article  PubMed  CAS  Google Scholar 

  30. Yildiz, A., and Selvin, P.R. (2005) Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res 38, 574–582.

    Article  PubMed  CAS  Google Scholar 

  31. Gueroui, Z., Freyssingeas, E., Place, C., and Berge, B. (2003) Transverse fluctuation analysis of single extended DNA molecules. Eur Phys J E Soft Matter 11, 105–108.

    Article  PubMed  CAS  Google Scholar 

  32. Quake, S.R., Babcock, H., and Chu, S. (1997) The dynamics of partially extended single molecules of DNA. Nature 388, 151–154.

    Article  PubMed  CAS  Google Scholar 

  33. Carter, B.C., Shubeita, G.T., and Gross, S.P. (2005) Tracking single particles: a user-friendly quantitative evaluation. Phys Biol 2, 60–72.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the many members of the Greene Laboratory who have worked on developing the DNA curtain experimental platform, in particular, Teresa Fazio for establishing the nanofabrication process. The Greene Laboratory is supported by the Howard Hughes Medical Institute, the National Institutes of Health, the National Science Foundation, the Susan G. Komen Foundation, and the Irma T. Hirschl Trust. IJF is supported by the NIH Fellowship #F32GM80864. We apologize to any colleagues whose work we were not able to cite due to length limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Greene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Finkelstein, I.J., Greene, E.C. (2011). Supported Lipid Bilayers and DNA Curtains for High-Throughput Single-Molecule Studies. In: Tsubouchi, H. (eds) DNA Recombination. Methods in Molecular Biology, vol 745. Humana Press. https://doi.org/10.1007/978-1-61779-129-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-129-1_26

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-128-4

  • Online ISBN: 978-1-61779-129-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics