Skip to main content

Identification and Assays of Polyamine Transport Systems in Escherichia coli and Saccharomyces cerevisiae

  • Protocol
  • First Online:
Polyamines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 720))

Abstract

Polyamine content in cells is regulated by biosynthesis, degradation, and transport. With regard to transport, uptake and excretion proteins exist in Escherichia coli and Saccharomyces cerevisiae. In E. coli, the uptake systems comprise a spermidine-preferential uptake system consisting of the PotA, B, C, and D proteins, and a putrescine-specific uptake system consisting of the PotF, G, H, and I proteins. Two other proteins, PotE and CadB, each containing 12 transmembrane segments, function as antiporters (putrescine-ornithine and cadaverine-lysine) and are important for cell growth at acidic pH. MdtJI was identified as a spermidine excretion system. When putrescine was used as energy source, PuuP functioned as a putrescine transporter. In S. cerevisiae, DUR3 and SAM3, containing 16 or 12 transmembrane segments, are the major polyamine uptake proteins, whereas TPO1 and TPO5, containing 12 transmembrane segments, are the major polyamine excretion proteins, and UGA4 is a putrescine transporter on the vacuolar membrane. The activities of DUR3 and TPO1 are regulated by phosphorylation of serine/threonine residues. The identification and assay procedures of these transporters are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen SS (1998) A guide to polyamines. Oxford University Press, New York, pp 1–543

    Google Scholar 

  2. Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559–564

    Article  PubMed  CAS  Google Scholar 

  3. Igarashi K, Kashiwagi K (1999) Polyamine transport in bacteria and yeast. Biochem J 344:633–642

    Article  PubMed  CAS  Google Scholar 

  4. Uemura T, Tachihara K, Tomitori H, Kashiwagi K, Igarashi K (2005) Characteristics of the polyamine transporter TPO1 and regulation of its activity and cellular localization by phosphorylation. J Biol Chem 280:9646–9652

    Article  PubMed  CAS  Google Scholar 

  5. Tachihara K, Uemura T, Kashiwagi K, Igarashi K (2005) Excretion of putrescine and spermidine by the protein encoded by YKL174c (TPO5) in Saccharomyces cerevisiae. J Biol Chem 280:12637–12642

    Article  PubMed  CAS  Google Scholar 

  6. Uemura T, Kashiwagi K, Igarashi K (2007) Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae. J Biol Chem 282:7733–7741

    Article  PubMed  CAS  Google Scholar 

  7. Higashi K, Ishigure H, Demizu R, Uemura T, Nishino K, Yamaguchi A, Kashiwagi K, Igarashi K (2008) Identification of a spermidine excretion protein complex (MdtJI) in Escherichia coli. J Bacteriol 190:872–878

    Article  PubMed  CAS  Google Scholar 

  8. Cunningham-Rundles S, Maas WK (1975) Isolation, characterization, and mapping of Escherichia coli mutants blocked in the synthesis of ornithine decarboxylase. J Bacteriol 124:791–799

    PubMed  CAS  Google Scholar 

  9. Linderoth N, Morris DR (1983) Structural specificity of the triamines sym-homospermidine and aminopropylcadaverine in stimulating growth of spermidine auxotrophs of Escherichia coli. Biochem Biophys Res Commun 117:616–622

    Article  PubMed  CAS  Google Scholar 

  10. Kashiwagi K, Hosokawa N, Furuchi T, Kobayashi H, Sasakawa C, Yoshikawa M, Igarashi K (1990) Isolation of polyamine transport-deficient mutants of Escherichia coli and cloning of the genes for polyamine transport proteins. J Biol Chem 265:20893–20897

    PubMed  CAS  Google Scholar 

  11. Fukuchi J, Kashiwagi K, Yamagishi M, Ishihama A, Igarashi K (1995) Decrease in cell viability due to the accumulation of spermidine in spermidine acetyltransferase-deficient mutant of Escherichia coli. J Biol Chem 270:18831–18835

    Article  PubMed  CAS  Google Scholar 

  12. Kakinuma Y, Maruyama T, Nozaki T, Wada Y, Ohsumi Y, Igarashi K (1995) Cloning of the gene encoding a putative serine/threonine protein kinase which enhances spermine uptake in Saccharomyces cerevisiae. Biochem Biophys Res Commun 216:985–992

    Article  PubMed  CAS  Google Scholar 

  13. Uemura T, Tomonari Y, Kashiwagi K, Igarashi K (2004) Uptake of GABA and putrescine by UGA4 on the vacuolar membrane in Saccharomyces cerevisiae. Biochem Biophys Res Commun 315:1082–1087

    Article  PubMed  CAS  Google Scholar 

  14. Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics: a cold harbor laboratory course manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  15. Maniatis T, Fritsch EF, Sambrook J (1982) Transformation of the calcium chrolide procedure. In: Maniatis T, Fritsch EF, Sanbrook J (eds) Molecular cloning: a laboratory mannual. Cold Spring Harbor Laboratory, Colg Spring Harbor, pp 250–251

    Google Scholar 

  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  17. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed  CAS  Google Scholar 

  18. Joho M, Ishikawa Y, Kunikane M, Inouhe M, Tohoyama H, Murayama T (1992) The subcellular distribution of nickel in Ni-sensitive and Ni-resistant strains of Saccharomyces cerevisiae. Microbios 71:149–159

    PubMed  CAS  Google Scholar 

  19. Igarashi K, Kashiwagi K, Hamasaki H, Miura A, Kakegawa T, Hirose S, Matsuzaki S (1986) Formation of a compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines. J Bacteriol 166:128–134

    PubMed  CAS  Google Scholar 

  20. Kashiwagi K, Innami A, Zenda R, Tomitori H, Igarashi K (2002) The ATPase activity and the functional domain of PotA, a component of the sermidine-preferential uptake system in Escheri­chia coli. J Biol Chem 277:24212–24219

    Article  PubMed  CAS  Google Scholar 

  21. Antognoni F, Del Duca S, Kuraishi A, Kawabe E, Fukuchi-Shimogori T, Kashiwagi K, Igarashi K (1999) Transcriptional inhibition of the operon for the spermidine uptake system by the substrate-binding protein PotD. J Biol Chem 274:1942–1948

    Article  PubMed  CAS  Google Scholar 

  22. Kurihara S, Oda S, Kato K, Kim HG, Koyanagi T, Kumagai H, Suzuki H (2005) A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J Biol Chem 280:4602–4608

    Article  PubMed  CAS  Google Scholar 

  23. Kashiwagi K, Kuraishi A, Tomitori H, Igarashi A, Nishimura K, Shirahata A, Igarashi K (2000) Identification of the putrescine recognition site on polyamine transport protein PotE. J Biol Chem 275:36007–36012

    Article  PubMed  CAS  Google Scholar 

  24. Soksawatmaekhin W, Uemura T, Fukiwake N, Kashiwagi K, Igarashi K (2006) Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB. J Biol Chem 281:29213–29220

    Article  PubMed  CAS  Google Scholar 

  25. Raj VS, Tomitori H, Yoshida M, Apirakaramwong A, Kashiwagi K, Takio K, Ishihama A, Igarashi K (2001) Properties of a revertant of Escherichia coli viable in the presence of spermidine accumulation: increase in L-glycerol 3-phosphate. J Bacteriol 183:4493–4498

    Article  PubMed  CAS  Google Scholar 

  26. Nozaki T, Nishimura K, Michael AJ, Maruyama T, Kakinuma Y, Igarashi K (1996) A second gene encoding a putative serine/threonine protein kinase which enhances spermine uptake in Saccharomyces cerevisiae. Biochem Biophys Res Commun 228:452–458

    Article  PubMed  CAS  Google Scholar 

  27. Kashiwagi K, Miyamoto S, Suzuki F, Kobayashi H, Igarashi K (1992) Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli. Proc Natl Acad Sci USA 89:4529–4533

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. A. J. Michael and K. Williams for critical reading of the manuscript prior to submission. This study was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Kashiwagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kashiwagi, K., Igarashi, K. (2011). Identification and Assays of Polyamine Transport Systems in Escherichia coli and Saccharomyces cerevisiae . In: Pegg, A., Casero, Jr., R. (eds) Polyamines. Methods in Molecular Biology, vol 720. Humana Press. https://doi.org/10.1007/978-1-61779-034-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-034-8_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-033-1

  • Online ISBN: 978-1-61779-034-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics