Skip to main content

Homologous Recombination in Plants: An Antireview

  • Protocol
  • First Online:
Plant Chromosome Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 701))

Abstract

Homologous recombination (HR) is a central cellular process involved in many aspects of genome maintenance such as DNA repair, replication, telomere maintenance, and meiotic chromosomal segregation. HR is highly conserved among eukaryotes, contributing to genome stability as well as to the generation of genetic diversity. It has been intensively studied, for almost a century, in plants and in other organisms. In this antireview, rather than reviewing existing knowledge, we wish to underline the many open questions in plant HR. We will discuss the following issues: how do we define homology and how the degree of homology affects HR? Are there any plant-specific HR qualities, how extensive is functional conservation and did HR proteins acquire new functions? How efficient is HR in plants and what are the cis and the trans factors that regulate it? Finally, we will give the prospects for enhancing the rates of gene targeting and meiotic HR for plant breeding purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bleuyard, J. Y., Gallego, M. E., and White, C. I. (2006) Recent advances in understanding of the DNA double-strand break repair machinery of plants. DNA Repair (Amst) 5, 1–12.

    Article  CAS  Google Scholar 

  2. Wijnker, E. and de Jong, H. (2008) Managing meiotic recombination in plant breeding. Trends Plant Sci 13, 640–6.

    Article  PubMed  CAS  Google Scholar 

  3. Schuermann, D., Molinier, J., Fritsch, O., and Hohn, B. (2005) The dual nature of homologous recombination in plants. Trends Genet 21, 172–81.

    Article  PubMed  CAS  Google Scholar 

  4. Muyt, A. D., Mercier, R., Mezard, C., and Grelon, M. (2009) Meiotic recombination and crossovers in plants. Genome Dyn 5, 14–25.

    Article  PubMed  Google Scholar 

  5. Mercier, R. and Grelon, M. (2008) Meiosis in plants: ten years of gene discovery. Cytogenet Genome Res 120, 281–90.

    Article  PubMed  CAS  Google Scholar 

  6. Mezard, C., Vignard, J., Drouaud, J., and Mercier, R. (2007) The road to crossovers: plants have their say. Trends Genet 23, 91–9.

    Article  PubMed  CAS  Google Scholar 

  7. Kumar, S., Allen, G. C., and Thompson, W. F. (2006) Gene targeting in plants: fingers on the move. Trends Plant Sci 11, 159–61.

    Article  PubMed  CAS  Google Scholar 

  8. Li, J., Hsia, A. P., and Schnable, P. S. (2007) Recent advances in plant recombination. Curr Opin Plant Biol 10, 131–5.

    Article  PubMed  CAS  Google Scholar 

  9. Haber, J. E. (2000) Partners and pathways repairing a double-strand break. Trends Genet 16, 259–64.

    Article  PubMed  CAS  Google Scholar 

  10. Puchta, H. and Hohn, B. (1991) A transient assay in plant cells reveals a positive correlation between extrachromosomal recombination rates and length of homologous overlap. Nucleic Acids Res 19, 2693–700.

    Article  PubMed  CAS  Google Scholar 

  11. Gorbunova, V. and Levy, A. A. (1999) How plants make ends meet: DNA double-strand break repair. Trends Plant Sci 4, 263–69.

    Article  PubMed  Google Scholar 

  12. Weiner, A., Zauberman, N., and Minsky, A. (2009) Recombinational DNA repair in a cellular context: a search for the homology search. Nat Rev Microbiol 7, 748–55.

    Article  PubMed  CAS  Google Scholar 

  13. Barzel, A. and Kupiec, M. (2008) Finding a match: how do homologous sequences get together for recombination? Nat Rev Genet 9, 27–37.

    Article  PubMed  CAS  Google Scholar 

  14. Li, X. and Heyer, W. D. (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18, 99–113.

    Article  PubMed  CAS  Google Scholar 

  15. Walbot, V. (1985) On the life strategies of plants and animals. Trends Genet 1, 165–9.

    Article  Google Scholar 

  16. Doyle, J. J., Flagel, L. E., Paterson, A. H., Rapp, R. A., Soltis, D. E., Soltis, P. S., and Wendel, J. F. (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42, 443–61.

    Article  PubMed  CAS  Google Scholar 

  17. Britt, A. B. (1999) Molecular genetics of DNA repair in higher plants. Trends Plant Sci 4, 20–25.

    Article  PubMed  Google Scholar 

  18. Kovalchuk, O., Arkhipov, A., Barylyak, I., Karachov, I., Titov, V., Hohn, B., and Kovalchuk, I. (2000) Plants experiencing chronic internal exposure to ionizing radiation exhibit higher frequency of homologous recombination than acutely irradiated plants. Mutat Res 449, 47–56.

    Article  PubMed  CAS  Google Scholar 

  19. Kovalchuk, I., Kovalchuk, O., Arkhipov, A., and Hohn, B. (1998) Transgenic plants are sensitive bioindicators of nuclear pollution caused by the Chernobyl accident. Nat Biotechnol 16, 1054–9.

    Article  PubMed  CAS  Google Scholar 

  20. Slade, D., Lindner, A. B., Paul, G., and Radman, M. (2009) Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136, 1044–55.

    Article  PubMed  CAS  Google Scholar 

  21. Sung, P. (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265, 1241–3.

    Article  PubMed  CAS  Google Scholar 

  22. Bleuyard, J. Y., Gallego, M. E., Savigny, F., and White, C. I. (2005) Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair. Plant J 41, 533–45.

    Article  PubMed  CAS  Google Scholar 

  23. Durrant, W. E., Wang, S., and Dong, X. (2007) Arabidopsis SNI1 and RAD51D regulate both gene transcription and DNA recombination during the defense response. Proc Natl Acad Sci USA 104, 4223–7.

    Article  PubMed  CAS  Google Scholar 

  24. Inagaki, S., Nakamura, K., and Morikami, A. (2009) A link among DNA replication, recombination, and gene expression revealed by genetic and genomic analysis of TEBICHI gene of Arabidopsis thaliana. PLoS Genet 5, e1000613.

    Article  PubMed  Google Scholar 

  25. Molinier, J., Ramos, C., Fritsch, O., and Hohn, B. (2004) CENTRIN2 modulates homologous recombination and nucleotide excision repair in Arabidopsis. Plant Cell 16, 1633–43.

    Article  PubMed  CAS  Google Scholar 

  26. Molinier, J., Lechner, E., Dumbliauskas, E., and Genschik, P. (2008) Regulation and role of Arabidopsis CUL4-DDB1A-DDB2 in maintaining genome integrity upon UV stress. PLoS Genet 4, e1000093.

    Article  PubMed  Google Scholar 

  27. Lieberman, M., Segev, O., Gilboa, N., Lalazar, A., and Levin, I. (2004) The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor Appl Genet 108, 1574–81.

    Article  PubMed  CAS  Google Scholar 

  28. Yin, H., Zhang, X., Liu, J., Wang, Y., He, J., Yang, T., Hong, X., Yang, Q., and Gong, Z. (2009) Epigenetic regulation, somatic homologous recombination, and abscisic acid signaling are influenced by DNA polymerase epsilon mutation in Arabidopsis. Plant Cell 21, 386–402.

    Article  PubMed  CAS  Google Scholar 

  29. Farrona, S., Hurtado, L., Bowman, J. L., and Reyes, J. C. (2004) The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering. Development 131, 4965–75.

    Article  PubMed  CAS  Google Scholar 

  30. Shaked, H., Avivi-Ragolsky, N., and Levy, A. A. (2006) Involvement of the Arabidopsis SWI2/SNF2 chromatin remodeling gene family in DNA damage response and recombination. Genetics 173, 985–94.

    Article  PubMed  CAS  Google Scholar 

  31. Mengiste, T. and Paszkowski, J. (1999) Prospects for the precise engineering of plant genomes by homologous recombination. Biol Chem 380, 749–58.

    Article  PubMed  CAS  Google Scholar 

  32. Schaefer, D. G. and Zryd, J. P. (1997) Efficient gene targeting in the moss Physcomitrella ­patens. Plant J 11, 1195–206.

    Article  PubMed  CAS  Google Scholar 

  33. Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H., Nishiyama, T., Perroud, P. F., Lindquist, E. A., Kamisugi, Y., Tanahashi, T., Sakakibara, K., Fujita, T., Oishi, K., Shin, I. T., Kuroki, Y., Toyoda, A., Suzuki, Y., Hashimoto, S., Yamaguchi, K., Sugano, S., Kohara, Y., Fujiyama, A., Anterola, A., Aoki, S., Ashton, N., Barbazuk, W. B., Barker, E., Bennetzen, J. L., Blankenship, R., Cho, S. H., Dutcher, S. K., Estelle, M., Fawcett, J. A., Gundlach, H., Hanada, K., Heyl, A., Hicks, K. A., Hughes, J., Lohr, M., Mayer, K., Melkozernov, A., Murata, T., Nelson, D. R., Pils, B., Prigge, M., Reiss, B., Renner, T., Rombauts, S., Rushton, P. J., Sanderfoot, A., Schween, G., Shiu, S. H., Stueber, K., Theodoulou, F. L., Tu, H., Van de Peer, Y., Verrier, P. J., Waters, E., Wood, A., Yang, L., Cove, D., Cuming, A. C., Hasebe, M., Lucas, S., Mishler, B. D., Reski, R., Grigoriev, I. V., Quatrano, R. S., and Boore, J. L. (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–9.

    Article  PubMed  CAS  Google Scholar 

  34. Higgins, J. D., Armstrong, S. J., Franklin, F. C., and Jones, G. H. (2004) The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes Dev 18, 2557–70.

    Article  PubMed  CAS  Google Scholar 

  35. Franklin, A. E., McElver, J., Sunjevaric, I., Rothstein, R., Bowen, B., and Cande, W. Z. (1999) Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase. Plant Cell 11, 809–24.

    PubMed  CAS  Google Scholar 

  36. Puchta, H. and Hohn, B. (1991) The mechanism of extrachromosomal homologous DNA recombination in plant cells. Mol Gen Genet 230, 1–7.

    Article  PubMed  CAS  Google Scholar 

  37. Swoboda, P., Gal, S., Hohn, B., and Puchta, H. (1994) Intrachromosomal homologous recombination in whole plants. EMBO J 13, 484–9.

    PubMed  CAS  Google Scholar 

  38. Puchta, H. (1999) Use of I-Sce I to induce DNA double-strand breaks in Nicotiana. Methods Mol Biol 113, 447–51.

    Article  PubMed  CAS  Google Scholar 

  39. Siebert, R. and Puchta, H. (2002) Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14, 1121–31.

    Article  PubMed  CAS  Google Scholar 

  40. Athma, P. and Peterson, T. (1991) Ac induces homologous recombination at the maize P locus. Genetics 128, 163–73.

    PubMed  CAS  Google Scholar 

  41. Shalev, G. and Levy, A. A. (1997) The maize transposable element Ac induces recombination between the donor site and an homologous ectopic sequence. Genetics 146, 1143–51.

    PubMed  CAS  Google Scholar 

  42. Puchta, H. (1999) Double-strand break-induced recombination between ectopic homologous sequences in somatic plant cells. Genetics 152, 1173–81.

    PubMed  CAS  Google Scholar 

  43. Opperman, R., Emmanuel, E., and Levy, A. A. (2004) The effect of sequence divergence on recombination between direct repeats in Arabidopsis. Genetics 168, 2207–15.

    Article  PubMed  CAS  Google Scholar 

  44. Emmanuel, E., Yehuda, E., Melamed-Bessudo, C., Avivi-Ragolsky, N., and Levy, A. A. (2006) The role of AtMSH2 in homologous recombination in Arabidopsis thaliana. EMBO Rep 7, 100–5.

    Article  PubMed  CAS  Google Scholar 

  45. Li, L., Jean, M., and Belzile, F. (2006) The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis. Plant J 45, 908–16.

    Article  PubMed  CAS  Google Scholar 

  46. Dooner, H. K. and He, L. (2008) Maize genome structure variation: interplay between retrotransposon polymorphisms and genic recombination. Plant Cell 20, 249–58.

    Article  PubMed  CAS  Google Scholar 

  47. Al-Kaff, N., Knight, E., Bertin, I., Foote, T., Hart, N., Griffiths, S., and Moore, G. (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann Bot 101, 863–72.

    Article  PubMed  CAS  Google Scholar 

  48. Korzun, V., Borner, A., Siebert, R., Malyshev, S., Hilpert, M., Kunze, R., and Puchta, H. (1999) Chromosomal location and genetic mapping of the mismatch repair gene homologs MSH2, MSH3, and MSH6 in rye and wheat. Genome 42, 1255–7.

    PubMed  CAS  Google Scholar 

  49. Dong, C., Whifford, R., and Langridge, P. (2002) A DNA mismatch repair gene links to the Ph2 locus in wheat. Genome 45, 116–24.

    Article  PubMed  CAS  Google Scholar 

  50. Nicolas, S. D., Leflon, M., Monod, H., Eber, F., Coriton, O., Huteau, V., Chevre, A. M., and Jenczewski, E. (2009) Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids. Plant Cell 21, 373–85.

    Article  PubMed  CAS  Google Scholar 

  51. Endo, M., Ishikawa, Y., Osakabe, K., Nakayama, S., Kaya, H., Araki, T., Shibahara, K. I., Abe, K., Ichikawa, H., Valentine, L., Hohn, B., and Toki, S. (2006) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 25, 5579–90.

    Article  PubMed  CAS  Google Scholar 

  52. Kirik, A., Pecinka, A., Wendeler, E., and Reiss, B. (2006) The chromatin assembly factor subunit FASCIATA1 is involved in homologous recombination in plants. Plant Cell 18, 2431–42.

    Article  PubMed  CAS  Google Scholar 

  53. Shaked, H., Melamed-Bessudo, C., and Levy, A. A. (2005) High-frequency gene ­targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102, 12265–9.

    Article  PubMed  CAS  Google Scholar 

  54. Hanin, M., Mengiste, T., Bogucki, A., and Paszkowski, J. (2000) Elevated levels of intrachromosomal homologous recombination in Arabidopsis overexpressing the MIM gene. Plant J 24, 183–9.

    Article  PubMed  CAS  Google Scholar 

  55. Takeda, S., Tadele, Z., Hofmann, I., Probst, A. V., Angelis, K. J., Kaya, H., Araki, T., Mengiste, T., Scheid, O. M., Shibahara, K., Scheel, D., and Paszkowski, J. (2004) BRU1, a novel link between responses to DNA ­damage and epigenetic gene silencing in Arabidopsis. Genes Dev 18, 782–93.

    Article  PubMed  CAS  Google Scholar 

  56. Anderson, L. K. and Stack, S. M. (2005) Recombination nodules in plants. Cytogenet Genome Res 109, 198–204.

    Article  PubMed  CAS  Google Scholar 

  57. Mortensen, U. H., Lisby, M., and Rothstein, R. (2009) Rad52. Curr Biol 19, R676–7.

    Article  PubMed  CAS  Google Scholar 

  58. Di Primio, C., Galli, A., Cervelli, T., Zoppe, M., and Rainaldi, G. (2005) Potentiation of gene targeting in human cells by expression of Saccharomyces cerevisiae Rad52. Nucleic Acids Res 33, 4639–48.

    Article  PubMed  Google Scholar 

  59. Siaud, N., Dray, E., Gy, I., Gerard, E., Takvorian, N., and Doutriaux, M. P. (2004) Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1. EMBO J 23, 1392–401.

    Article  PubMed  CAS  Google Scholar 

  60. Tsutsui, Y., Khasanov, F. K., Shinagawa, H., Iwasaki, H., and Bashkirov, V. I. (2001) Multiple interactions among the components of the recombinational DNA repair system in Schizosaccharomyces pombe. Genetics 159, 91–105.

    PubMed  CAS  Google Scholar 

  61. Milne, G. T. and Weaver, D. T. (1993) Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev 7, 1755–65.

    Article  PubMed  CAS  Google Scholar 

  62. Shen, Z., Cloud, K. G., Chen, D. J., and Park, M. S. (1996) Specific interactions between the human RAD51 and RAD52 proteins. J Biol Chem 271, 148–52.

    Article  PubMed  CAS  Google Scholar 

  63. Du, Y., Zhou, J., Fan, J., Shen, Z., and Chen, X. (2009) Streamline proteomic approach for characterizing protein-protein interaction network in a RAD52 protein complex. J Proteome Res 8, 2211–7.

    Article  PubMed  CAS  Google Scholar 

  64. Li, W., Chen, C., Markmann-Mulisch, U., Timofejeva, L., Schmelzer, E., Ma, H., and Reiss, B. (2004) The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis. Proc Natl Acad Sci USA 101, 10596–601.

    Article  PubMed  CAS  Google Scholar 

  65. Alexeev, A., Mazin, A., and Kowalczykowski, S. C. (2003) Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat Struct Biol 10, 182–6.

    Article  PubMed  CAS  Google Scholar 

  66. Klutstein, M., Shaked, H., Sherman, A., Avivi-Ragolsky, N., Shema, E., Zenvirth, D., Levy, A. A., and Simchen, G. (2008) Functional conservation of the yeast and Arabidopsis RAD54-like genes. Genetics 178, 2389–97.

    Article  PubMed  CAS  Google Scholar 

  67. Paszkowski, J., Baur, M., Bogucki, A., and Potrykus, I. (1988) Gene targeting in plants. EMBO J 7, 4021–6.

    PubMed  CAS  Google Scholar 

  68. Terada, R., Urawa, H., Inagaki, Y., Tsugane, K., and Iida, S. (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20, 1030–4.

    Article  PubMed  CAS  Google Scholar 

  69. Salomon, S. and Puchta, H. (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17, 6086–95.

    Article  PubMed  CAS  Google Scholar 

  70. Bibikova, M., Carroll, D., Segal, D. J., Trautman, J. K., Smith, J., Kim, Y. G., and Chandrasegaran, S. (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21, 289–97.

    Article  PubMed  CAS  Google Scholar 

  71. Shukla, V. K., Doyon, Y., Miller, J. C., DeKelver, R. C., Moehle, E. A., Worden, S. E., Mitchell, J. C., Arnold, N. L., Gopalan, S., Meng, X., Choi, V. M., Rock, J. M., Wu, Y. Y., Katibah, G. E., Zhifang, G., McCaskill, D., Simpson, M. A., Blakeslee, B., Greenwalt, S. A., Butler, H. J., Hinkley, S. J., Zhang, L., Rebar, E. J., Gregory, P. D., and Urnov, F. D. (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437–41.

    Article  PubMed  CAS  Google Scholar 

  72. Townsend, J. A., Wright, D. A., Winfrey, R. J., Fu, F., Maeder, M. L., Joung, J. K., and Voytas, D. F. (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459, 442–5.

    Article  PubMed  CAS  Google Scholar 

  73. Soutoglou, E., Dorn, J. F., Sengupta, K., Jasin, M., Nussenzweig, A., Ried, T., Danuser, G., and Misteli, T. (2007) Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol 9, 675–82.

    Article  PubMed  CAS  Google Scholar 

  74. Gorbunova, V. and Levy, A. A. (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25, 4650–7.

    Article  PubMed  CAS  Google Scholar 

  75. Rubin, E. and Levy, A. A. (1997) Abortive gap repair: the underlying mechanism for Ds elements formation. Mol Cell Biol 17, 6294–302.

    PubMed  CAS  Google Scholar 

  76. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W. (1983) The double-strand break repair model of recombination. Cell 33, 25–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Even-Faitelson and Dr. Samach for useful comments and the EU-FP7 Recbreeb and US-Israel BARD grants for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraham A. Levy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Spirnger Science+Business Media, LLC

About this protocol

Cite this protocol

Lieberman-Lazarovich, M., Levy, A.A. (2011). Homologous Recombination in Plants: An Antireview. In: Birchler, J. (eds) Plant Chromosome Engineering. Methods in Molecular Biology, vol 701. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-957-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-957-4_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-956-7

  • Online ISBN: 978-1-61737-957-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics