Skip to main content

Utilization of SSCprofiler to Predict a New miRNA Gene

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 676))

Abstract

Experimental identification provides a valuable yet slow and expensive method for predicting novel miRNA genes. With the advent of computational procedures, it is now possible to capture characteristic features of miRNA biogenesis in an in silico model, resulting thereafter in the fast and inexpensive prediction of multiple novel miRNA gene candidates. These computational tools provide valuable clues to experimentalists, allowing them to narrow down their search space, making experimental verification less time consuming and less costly. Furthermore, the computational model itself can provide biological information as to which are the dominant features that characterize these regulatory units. Moreover, large-scale, high-throughput techniques, such as deep sequencing and tiling arrays, require computational methods to analyze this vast amount of data. Computational miRNA gene prediction tools are often used in synergy with high-throughput methods, aiding in the discovery of putative miRNA genes. This chapter focuses on a recently developed computational tool (SSCprofiler) for identifying miRNA genes and provides an overview of the methodology undertaken by this tool, and defines a stepwise guideline on how to utilize SSCprofiler to predict novel miRNAs in the human genome.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell 75, 843–854.

    Article  PubMed  CAS  Google Scholar 

  2. Huttenhofer, A., and Vogel, J. (2006) Experi­mental approaches to identify non-coding RNAs, Nucleic Acids Res 34, 635–646.

    Article  PubMed  Google Scholar 

  3. Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias, Cell 115, 209–216.

    Article  PubMed  CAS  Google Scholar 

  4. Lee, Y., Jeon, K., Lee, J. T., Kim, S., and Kim, V. N. (2002) MicroRNA maturation: stepwise processing and subcellular localization, EMBO J 21, 4663–4670.

    Article  PubMed  CAS  Google Scholar 

  5. Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., and Bartel, D. P. (2003) Vertebrate microRNA genes, Science 299, 1540.

    Article  PubMed  CAS  Google Scholar 

  6. Helvik, S. A., Snove, O., Jr., and Saetrom, P. (2006) Reliable prediction of Drosha processing sites improves microRNA gene prediction, Bioinformatics 23, 142–149.

    Article  PubMed  Google Scholar 

  7. Hertel, J., and Stadler, P. F. (2006) Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data, Bioinformatics 22, e197–e202.

    Article  PubMed  CAS  Google Scholar 

  8. Lim, L. P., Lau, N. C., Weinstein, E. G., Abdelhakim, A., and Yekta, S. (2003b) The microRNAs of Caenorhabditis elegans, Genes Dev 16, 991–1008.

    Article  Google Scholar 

  9. Sewer, A., Paul, N., Landgraf, P., Aravin, A., Pfeffer, S., Brownstein, M. J., Tuschl, T., van Nimwegen, E., and Zavolan, M. (2005) Identification of clustered microRNAs using an ab initio prediction method, BMC Bioin-formatics 6, 267–281.

    Article  PubMed  Google Scholar 

  10. Yousef, M., Nebozhyn, M., Shatkay, H., Kanterakis, S., Showe, L. C., and Showe, M. K. (2006) Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier, Bioinformatics 22, 1325–1334.

    Article  PubMed  CAS  Google Scholar 

  11. Oulas, A., Boutla, A., Gkirtzou, K., Reczko, M., Kalantidis, K., and Poirazi, P. (2009) Prediction of novel microRNA genes in cancer-associated genomic regions – a combined computational and experimental approach, Nucleic Acids Res 37, 3276–3287.

    Article  PubMed  CAS  Google Scholar 

  12. Eddy, S. R. (1998) Profile hidden Markov models, Bioinformatics 14, 755–763.

    Article  PubMed  CAS  Google Scholar 

  13. Hofacker, I. L. (2003) Vienna RNA secondary structure server, Nucleic Acids Res 31, 3429–3431.

    Article  PubMed  CAS  Google Scholar 

  14. Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R. H., and Cuppen, E. (2005) Phylogenetic shadowing and computational identification of human microRNA genes, Cell 120, 21–24.

    Article  PubMed  CAS  Google Scholar 

  15. Nam, J. W., Shin, K. R., Han, J., Lee, Y., Kim, V. N., and Zhang, B. T. (2005) Human microRNA prediction through a probabilistic co-learning model of sequence and structure, Nucleic Acid Res 33, 3570–3581.

    Article  PubMed  CAS  Google Scholar 

  16. Friedlander, M. R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., and Rajewsky, N. (2008) Discovering microRNAs from deep sequencing data using miRDeep, Nat Biotechnol 26, 407–415.

    Article  PubMed  Google Scholar 

  17. Kapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., Willingham, A. T., Stadler, P. F., Hertel, J., Hackermuller, J., Hofacker, I. L., Bell, I., Cheung, E., Drenkow, J., Dumais, E., Patel, S., Helt, G., Ganesh, M., Ghosh, S., Piccolboni, A., Sementchenko, V., Tammana, H., and Gingeras, T. R. (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription, Science 316, 1484–1488.

    Article  PubMed  CAS  Google Scholar 

  18. Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A. O., Landthaler, M., Lin, C., Socci, N. D., Hermida, L., Fulci, V., Chiaretti, S., Foa, R., Schliwka, J., Fuchs, U., Novosel, A., Muller, R. U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D. B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H. I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C. E., Nagle, J. W., Ju, J., Papavasiliou, F. N., Benzing, T., Lichter, P., Tam, W., Brownstein, M. J., Bosio, A., Borkhardt, A., Russo, J. J., Sander, C., Zavolan, M., and Tuschl, T. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing, Cell 129, 1401–1414.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the action 8.3.1 (Reinforcement Program of Human Research Manpower – “PENED 2003”, [03ED842]) of the operational program “competitiveness” of the Greek General Secretariat for Research and Technology, a Marie Curie Fellowship of the European Commission [PIOF-GA-2008-219622] and the National Science Foundation [NSF 0515357].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Oulas, A., Poirazi, P. (2011). Utilization of SSCprofiler to Predict a New miRNA Gene. In: Wu, W. (eds) MicroRNA and Cancer. Methods in Molecular Biology, vol 676. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-863-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-863-8_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-862-1

  • Online ISBN: 978-1-60761-863-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics