Skip to main content

Visualisation of Lymphoid Organ Development

  • Protocol
  • First Online:
T-Cell Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 616))

Abstract

This chapter provides information on imaging tools that can be employed to visualise and study lymphoid organ development. We focus on the use of genetically modified mouse models that take advantage of fluorescent protein expression in discrete cell populations, thus allowing live cell imaging during lymphoid organogenesis. We discuss approaches that allow characterisation of the cell types involved in the formation of lymphoid organs, including (i) functional assays in explant organ cultures and (ii) high-resolution whole-mount immunostaining methods, which are useful for the characterisation of specific cell populations in the context of the whole developing organ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Owen JJ, Ritter MA. (1969) Tissue interaction in the development of thymus lymphocytes. J Exp Med 129, 431–42.

    Article  PubMed  CAS  Google Scholar 

  2. Petrie HT. (2002) Role of thymic organ structure and stromal composition in steady-state postnatal T-cell production. Immunol Rev 189, 8–19.

    Article  PubMed  CAS  Google Scholar 

  3. Le Douarin NM, Jotereau FV. (1975) Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J Exp Med 142, 17–40.

    Article  PubMed  Google Scholar 

  4. Foster K, Sheridan J, Veiga-Fernandes H, Roderick K, Pachnis V, Adams R, Blackburn C, Kioussis D, Coles M. (2008) Contribution of neural crest-derived cells in the embryonic and adult thymus. J Immunol 180, 3183–9.

    PubMed  CAS  Google Scholar 

  5. Muller SM, Stolt CC, Terszowski G, Blum C, Amagai T, Kessaris N, Iannarelli P, Richardson WD, Wegner M, Rodewald HR. (2008) Neural crest origin of perivascular mesenchyme in the adult thymus. J Immunol 180, 5344–51.

    PubMed  Google Scholar 

  6. Mebius RE. (2003) Organogenesis of lymphoid tissues. Nat Rev Immunol 3, 292–303.

    Article  PubMed  CAS  Google Scholar 

  7. Coles MC, Veiga-Fernandes H, Foster KE, Norton T, Pagakis SN, Seddon B, Kioussis D. (2006) Role of T and NK cells and IL7/IL7r interactions during neonatal maturation of lymph nodes. Proc Natl Acad Sci USA 103, 13457–62.

    Article  PubMed  CAS  Google Scholar 

  8. Mebius RE. (2007) Lymphoid organogenesis: educating stroma. Immunol Cell Biol 85, 79–80.

    Article  PubMed  Google Scholar 

  9. Veiga-Fernandes H, Coles MC, Foster KE, Patel A, Williams A, Natarajan D, Barlow A, Pachnis V, Kioussis D. (2007) Tyrosine kinase receptor RET is a key regulator of Peyer’s Patch organogenesis. Nature 446, 547–51.

    Article  PubMed  CAS  Google Scholar 

  10. Vondenhoff MF, Kraal G, Mebius RE. (2007) Lymphoid organogenesis in brief. Eur J Immunol 37(Suppl 1), S46–52.

    Article  Google Scholar 

  11. Yoshida H, Kawamoto H, Santee SM, Hashi H, Honda K, Nishikawa S, Ware CF, Katsura Y, Nishikawa SI. (2001) Expression of alpha(4)beta(7) integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J Immunol 167, 2511–21.

    PubMed  CAS  Google Scholar 

  12. Fukuyama S, Kiyono H. (2007) Neuroregulator RET initiates Peyer’s-patch tissue genesis. Immunity 26, 393–5.

    Article  PubMed  CAS  Google Scholar 

  13. Festenstein R, Tolaini M, Corbella P, Mamalaki C, Parrington J, Fox M, Miliou A, Jones M, Kioussis D. (1996) Locus control region function and heterochromatin-induced position effect variegation. Science 271, 1123–5.

    Article  PubMed  CAS  Google Scholar 

  14. Kioussis D, Festenstein R. (1997) Locus control regions: overcoming heterochromatin-induced gene inactivation in mammals. Curr Opin Genet Dev 7, 614–9.

    Article  PubMed  CAS  Google Scholar 

  15. Zambrowicz BP, Imamoto A, Fiering S, Herzenberg LA, Kerr WG, Soriano P. (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci USA 94, 3789–94.

    Article  PubMed  CAS  Google Scholar 

  16. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F. (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1, 4.

    Article  PubMed  CAS  Google Scholar 

  17. de Boer J, Williams A, Skavdis G, Harker N, Coles M, Tolaini M, Norton T, Williams K, Roderick K, Potocnik AJ, Kioussis D. (2003) Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur J Immunol 33, 314–25.

    Article  PubMed  Google Scholar 

  18. Hoffman RM. (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5, 796–806.

    Article  PubMed  CAS  Google Scholar 

  19. Kurebayashi S, Ueda E, Sakaue M, Patel DD, Medvedev A, Zhang F, Jetten AM. (2000) Retinoid-related orphan receptor gamma (RORgamma) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc Natl Acad Sci USA 97, 10132–7.

    Article  PubMed  CAS  Google Scholar 

  20. Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, Mebius RE, Littman DR. (2000) Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288, 2369–73.

    Article  PubMed  CAS  Google Scholar 

  21. Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR. (2004) An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5, 64–73.

    Article  PubMed  CAS  Google Scholar 

  22. Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP. (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8, 1323–6.

    Article  PubMed  CAS  Google Scholar 

  23. Gordon J, Xiao S, Hughes B 3rd, Su DM, Navarre SP, Condie BG, Manley NR. (2007) Specific expression of lacZ and Cre recombinase in fetal thymic epithelial cells by multiplex gene targeting at the Foxn1 locus. BMC Dev Biol 7, 69.

    Article  PubMed  Google Scholar 

  24. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M. (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230, 230–42.

    Article  PubMed  CAS  Google Scholar 

  25. Bajenoff M, Egen JG, Qi H, Huang AY, Castellino F, Germain RN. (2007) Highways, byways and breadcrumbs: directing lymphocyte traffic in the lymph node. Trends Immunol 28, 346–52.

    Article  PubMed  CAS  Google Scholar 

  26. Bajenoff M, Germain RN. (2007) Seeing is believing: a focus on the contribution of microscopic imaging to our understanding of immune system function. Eur J Immunol 37(Suppl 1), S18–33.

    Article  Google Scholar 

Download references

Acknowledgments

Work in this chapter was funded by the Medical Research Council (MRC), UK. We wish to thank Vassilis Pachnis for helpful discussion; T. Norton and K. Williams for technical assistance. We also wish to thank Prof. D. Vestweber for kindly providing endomucin antibody. H.V.-F. and K.F. were supported by a grant from the European Union: Molecular Imaging LSHG-CT-2003-503259

Supplementary Video 1. Time-lapse video showing mobility of GFP cells in the wall of the gut (low magnification). This video shows a time-lapse sequence of E15.5 intestines. Time-lapse images were taken for 90 min.

Supplementary Video 2. Three-dimensional reconstitution of an embryo section of E13.5. This sample was immunostained with anti-GFP (green) and the embryo structure is depicted in grey color. This video shows the developing lymph nodes and thymus. Magnification ×10.

Supplementary Video 3. Three-dimensional reconstitution of an adult thymus section. This sample was immunostained with anti-endomucin (red). This video shows the vessel and capillary endomucin-positive network within the thymus. Magnification ×40.

Paraformaldehyde fixation times vary according to size of tissues or organs. As guidance, E15.5 intestine will require 15 min fixation at room temperature. These conditions may however vary according to the tissue and antibodies being used.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Veiga-Fernandes, H., Foster, K., Patel, A., Coles, M., Kioussis, D. (2010). Visualisation of Lymphoid Organ Development. In: Marelli-Berg, F., Nourshargh, S. (eds) T-Cell Trafficking. Methods in Molecular Biology, vol 616. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-461-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-461-6_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-460-9

  • Online ISBN: 978-1-60761-461-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics