Skip to main content

Chromatin Charting: Global Mapping of Epigenetic Effects

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 553))

Abstract

To tackle the question of how chromatin organization is involved in global regulation of genome-related processes such as transcription, we have recently created a collection of 277 transposon-tagged Arabidopsis lines comprised of a single insert with a common luciferase reporter cassette and a LacO repeat array for visual tracking of the tagged region via fluorescent protein fusion technology. Using this collection of plants, one can begin to map transgene position effects as well as global epigenetic control in response to developmental or externally applied cues. In this chapter, we will outline the approach and methods for deploying this novel resource for the study of global gene control, using Arabidopsis as a convenient model system.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Brink, R.A. (1956) A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics 41, 872–889.

    PubMed  CAS  Google Scholar 

  2. Chandler, V. and Stam, M. (2004) Chromatin conversations: mechanisms and implications of paramutation. Nat. Rev. Genet. 5, 532–544.

    Article  PubMed  CAS  Google Scholar 

  3. Grummt, I. and Pikaard, C.S. (2003) Epigenetic silencing of RNA polymerase I transcription. Nat. Rev. Mol. Cell Biol. 4, 641–649.

    Article  PubMed  CAS  Google Scholar 

  4. Matzke, M.A. and Birchler, J.A. (2005) RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 6, 24–35.

    Article  PubMed  CAS  Google Scholar 

  5. Wolffe, A.P. and Matzke, M.A. (1999) Epigenetics: regulation through repression. Science 286, 481–486.

    Article  PubMed  CAS  Google Scholar 

  6. Hsieh, T.-F. and Fischer, R.L. (2005) Biology of chromatin dynamics. Annu. Rev. Plant Biol. 56, 327–351.

    Article  PubMed  CAS  Google Scholar 

  7. Reyes, J.C. (2006) Chromatin modifiers that control plant development. Curr. Opin. Plant Biol. 9, 21–27.

    Article  PubMed  CAS  Google Scholar 

  8. Bender, J. (2004) DNA methylation and epigenetics. Annu. Rev. Plant Biol. 55, 41–68.

    Article  PubMed  CAS  Google Scholar 

  9. Chan, S.W.-L., Henderson, I.R., and Jacobsen, S.E. (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 6, 351–360.

    Article  PubMed  CAS  Google Scholar 

  10. Fuchs, J., Demidov, D., Houben, A., and Schubert, I. (2006) Chromosomal histone modification patterns – from conservation to diversity. Trends Plant Sci. 11, 199–208.

    Article  PubMed  CAS  Google Scholar 

  11. Barrera, L.O. and Ren, B. (2006) The transcriptional regulatory code of eukaryotic cells – insights from genome-wide analysis of chromatin organization and transcription factor binding. Curr. Opin. Cell Biol. 18, 291–298.

    Article  PubMed  CAS  Google Scholar 

  12. He, Y. and Amasino, R.M. (2004) Role of chromatin modification in flowering-time control. Trends Plant Sci. 10, 30–35.

    Article  Google Scholar 

  13. Lippman, Z. and Martienssen, R. (2004) The role of RNA interference in heterochromatic silencing. Nature 431, 364–370.

    Article  PubMed  CAS  Google Scholar 

  14. Pontes, O., Li, C.F., Nunes, P.C., Haag, J., Ream, T., Vitins, A., Jacobsen, S.E., and Pikaard, C.S. (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126, 79–92.

    Article  PubMed  CAS  Google Scholar 

  15. Alleman, M., Sidorenko, L., McGinnis, K., Seshadri, V., Dorweiler, J.E., White, J., Sikkink, K., and Chandler, V.L. (2006) An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442, 295–298.

    Article  PubMed  CAS  Google Scholar 

  16. McGinnis, K.M., Springer, C., Lin, Y., Carey, C.C., and Chandler, V. (2006) Transcriptionally silenced transgenes in maize are activated by three mutations defective in paramutation. Genetics 173, 1637–1647.

    Article  PubMed  CAS  Google Scholar 

  17. Elmayan, T., Proux, F., and Vaucheret, H. (2005) Arabidopsis RPA2: a genetic link among transcriptional gene silencing, DNA repair, and DNA replication. Curr. Biol. 15, 1919–1925.

    Article  PubMed  CAS  Google Scholar 

  18. Lippman, Z., et al. (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476.

    Article  PubMed  CAS  Google Scholar 

  19. Probst, A.V., Fransz, P.F., Paszkowski, J., and Mittelsten-Scheid, O. (2003) Two means of transcriptional reactivation within heterochromatin. Plant J. 33, 743–749.

    Article  PubMed  CAS  Google Scholar 

  20. Cremer, T., Cremer, M., Dietzel, S., Muller, S., Solovei, I., and Fakan, S. (2006) Chromosome territories – a functional nuclear landscape. Curr. Opin. Cell Biol. 18, 307–316.

    Article  PubMed  CAS  Google Scholar 

  21. Kosak, S.T. and Groudine, M. (2004) Gene order and dynamic domains. Science 306, 644–647.

    Article  PubMed  CAS  Google Scholar 

  22. Sundaresan, V., Springer, P., Volpe, T., Howard, S., Jones, J.D.G., Dean, C., Ma, H., and Martienssen, R. (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9, 1797–1810.

    Article  PubMed  CAS  Google Scholar 

  23. Kato, N. and Lam, E. (2001) Detection of chromosomes tagged with green fluorescent protein in live Arabidopsis thaliana plants. Genome Biol. 2, research 0045.1–0045.10.

    Article  Google Scholar 

  24. Rosin, R., Watanabe, N., Cacas, J.-L., Kato, N., Arroyo, J.M., Fang, Y., May, B., Vaughn, M., Simorowski, J., Ramu, U., McCombie, R.W., Spector, D.L., Martienssen, R.A., and Lam, E. (2008) Genome-wide transposon tagging reveals location-dependent effects on transcription and chromatin organization in Arabidopsis. Plant J. 55(3): 514–525.

    Google Scholar 

  25. Kato, N. and Lam, E. (2003) Chromatin of endoreduplicated pavement cells has greater range of movement than that of diploid guard cells in Arabidopsis thaliana. J. Cell Sci. 116, 2195–2201.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by an NSF Plant Genome Research Program grant to E.L. (#0077617).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Luo, C., Lam, E. (2009). Chromatin Charting: Global Mapping of Epigenetic Effects. In: Belostotsky, D. (eds) Plant Systems Biology. Methods in Molecular Biology™, vol 553. Humana Press. https://doi.org/10.1007/978-1-60327-563-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-563-7_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-562-0

  • Online ISBN: 978-1-60327-563-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics