Skip to main content

Immunoprecipitation of Methylated DNA

  • Protocol
  • First Online:
Chromatin Immunoprecipitation Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 567))

Abstract

DNA methylation contributes to the regulation of long-term gene repression by enabling the recruitment of transcriptional repressor complexes to methylated cytosines. Several methods for detecting DNA methylation at the gene-specific and genome-wide levels have been developed. Methylated DNA immunoprecipitation, or MeDIP, consists of the selective immunoprecipitation of methylated DNA fragments using antibodies to 5-methylcytosine. The genomic site of interest can be detected by PCR, hybridization to DNA arrays, or by direct sequencing. This chapter describes the MeDIP protocol and quality control tests that should be performed throughout the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones, P. A. and Takai, D. (2001) The role of DNA methylation in mammalian epigenetics. Science 293, 1068–1070.

    Article  PubMed  CAS  Google Scholar 

  2. Jaenisch, R. and Bird, A. (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 Suppl, 245–254.

    Article  PubMed  Google Scholar 

  3. Turek-Plewa, J. and Jagodzinski, P. P. (2005) The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol. Biol. Lett. 10, 631–647.

    PubMed  CAS  Google Scholar 

  4. Rai, K., Chidester, S., Zavala, C. V., Manos, E. J., James, S. R., Karpf, A. R., Jones, D. A. and Cairns, B. R. (2007) Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev. 21, 261–266.

    Article  PubMed  CAS  Google Scholar 

  5. Goll, M. G., Kirpekar, F., Maggert, K. A., Yoder, J. A., Hsieh, C. L., Zhang, X., Golic, K. G., Jacobsen, S. E. and Bestor, T. H. (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395–398.

    Article  PubMed  CAS  Google Scholar 

  6. Hoffman, A. R. and Hu, J. F. (2006) Directing DNA methylation to inhibit gene expression. Cell Mol. Neurobiol. 26, 425–438.

    Article  PubMed  CAS  Google Scholar 

  7. Klose, R. J. and Bird, A. P. (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97.

    Article  PubMed  CAS  Google Scholar 

  8. Morgan, H. D., Santos, F., Green, K., Dean, W. and Reik, W. (2005) Epigenetic reprogramming in mammals. Hum. Mol. Genet. 14, R47–R58.

    Article  PubMed  CAS  Google Scholar 

  9. Young, L. E. and Beaujean, N. (2004) DNA methylation in the preimplantation embryo: the differing stories of the mouse and sheep. Anim. Reprod. Sci. 82, 61–78.

    Article  PubMed  Google Scholar 

  10. Mann, J. R. (2001) Imprinting in the germ line. Stem Cells 19, 287–294.

    Article  PubMed  CAS  Google Scholar 

  11. Razin, A. and Shemer, R. (1995) DNA methylation in early development. Hum. Mol. Genet. 4, 1751–1755.

    PubMed  CAS  Google Scholar 

  12. Hellman, A. and Chess, A. (2007) Gene body-specific methylation on the active X chromosome. Science 315, 1141–1143.

    Article  PubMed  CAS  Google Scholar 

  13. Tremblay, K. D., Saam, J. R., Ingram, R. S., Tilghman, S. M. and Bartolomei, M. S. (1995) A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat. Genet. 9, 407–413.

    Article  PubMed  CAS  Google Scholar 

  14. Sapienza, C., Peterson, A. C., Rossant, J. and Balling, R. (1987) Degree of methylation of transgenes is dependent on gamete of origin. Nature 328, 251–254.

    Article  PubMed  CAS  Google Scholar 

  15. Reik, W., Collick, A., Norris, M. L., Barton, S. C. and Surani, M. A. (1987) Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328, 248–251.

    Article  PubMed  CAS  Google Scholar 

  16. Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Paabo, S., Rebhan, M. and Schubeler, D. (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39, 457–466.

    Article  PubMed  CAS  Google Scholar 

  17. Clark, S. J., Statham, A., Stirzaker, C., Molloy, P. L. and Frommer, M. (2006) DNA methylation: bisulphite modification and analysis. Nat. Protoc. 1, 2353–2364.

    Article  PubMed  CAS  Google Scholar 

  18. Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L. and Schubeler, D. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862.

    Article  PubMed  CAS  Google Scholar 

  19. Zilberman, D. and Henikoff, S. (2007) Genome-wide analysis of DNA methylation patterns. Development 134, 3959–3965.

    Article  PubMed  CAS  Google Scholar 

  20. Jacinto, F. V., Ballestar, E. and Esteller, M. (2008) Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. Biotechniques 44, 35, 37, 39.

    Article  PubMed  CAS  Google Scholar 

  21. Penterman, J., Zilberman, D., Huh, J. H., Ballinger, T., Henikoff, S. and Fischer, R. L. (2007) DNA demethylation in the Arabidopsis genome. Proc. Natl. Acad. Sci U. S. A 104, 6752–6757.

    Article  PubMed  CAS  Google Scholar 

  22. Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. and Henikoff, S. (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39, 61–69.

    Article  PubMed  CAS  Google Scholar 

  23. Jacinto, F. V., Ballestar, E., Ropero, S. and Esteller, M. (2007) Discovery of epigenetically silenced genes by methylated DNA immunoprecipitation in colon cancer cells. Cancer Res. 67, 11481–11486.

    Article  PubMed  CAS  Google Scholar 

  24. Boquest, A. C., Noer, A., Sorensen, A. L., Vekterud, K. and Collas, P. (2007) CpG methylation profiles of endothelial cell-specific gene promoter regions in adipose tissue stem cells suggest limited differentiation potential toward the endothelial cell lineage. Stem Cells 25, 852–861.

    Article  PubMed  CAS  Google Scholar 

  25. Noer, A., Sørensen, A. L., Boquest, A. C. and Collas, P. (2006) Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured and differentiated mesenchymal stem cells from adipose tissue. Mol. Biol. Cell 17, 3543–3556.

    Article  PubMed  CAS  Google Scholar 

  26. Noer, A., Boquest, A. C. and Collas, P. (2007) Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol. 8, 18–29.

    Article  PubMed  Google Scholar 

  27. Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., Koche, R. P., Lee, W., Mendenhall, E., O'Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E. S. and Bernstein, B. E. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560.

    Article  PubMed  CAS  Google Scholar 

  28. Acevedo, L. G., Iniguez, A. L., Holster, H. L., Zhang, X., Green, R. and Farnham, P. J. (2007) Genome-scale ChIP-chip analysis using 10,000 human cells. Biotechniques 43, 791–797.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The basis for this MeDIP protocol has been the procedure established in Dirk Schübeler’s laboratory (Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland) by Michaël Weber and Dirk Schübeler and posted on the Epigenome Network of Excellence website (http://www.epigenome-noe.net/researchtools/protocol.php?protid=33). We are also grateful to Dirk Schübeler for discussion and advice. Our work is supported by the Research Council of Norway.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sørensen, A.L., Collas, P. (2009). Immunoprecipitation of Methylated DNA. In: Collas, P. (eds) Chromatin Immunoprecipitation Assays. Methods in Molecular Biology, vol 567. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-414-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-414-2_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-413-5

  • Online ISBN: 978-1-60327-414-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics