Skip to main content
Book cover

Rat Genomics pp 403–414Cite as

Rat Models of Cardiovascular Diseases

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 597))

Abstract

In cardiovascular research, the rat has been the main model of choice for decades. Experimental procedures were developed to generate cardiovascular disease states in this species, such as systemic and pulmonary hypertension, cardiac hypertrophy and failure, myocardial infarction, and stroke. Furthermore, rats have been bred, which spontaneously develop such diseases. They became extremely valuable models to understand the genetics of these diseases, since powerful genomic tools are now available for the rat. One of these tools is transgenic technology, which has allowed the creation of even more disease models in the rat. This review summarizes the experimental, genetic, and transgenic rat models for cardiovascular diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Aitman TJ, Critser JK, Cuppen E, Dominiczak AF, Fernandez XM, Flint J, Gauguier D, Geurts AM, Gould M, Harris PC, Holmdahl R, Huebner N, Iszvak Z, Jacob H, Kuramoto T, Kwitek AE, Marrone A, Mashimo T, Moreno-Quinn C, Mullins J, Mullins LJ, Olsson T, Riley L, Saar K, Serikawa T, Shul JD, Szpirer C, Twigger SN, Voigt B, Worley K (2008) Progress and prospects in rat genetics: a community view. Nat Genet 40:516–522

    Article  CAS  PubMed  Google Scholar 

  2. Mullins JJ, Peters J, Ganten D (1990) Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344:541–544

    Article  CAS  PubMed  Google Scholar 

  3. Hammer RE, Maika SD, Richardson JA, Tang J, Taurog JD (1990) Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders. Cell 63:1099–1112

    Article  CAS  PubMed  Google Scholar 

  4. Ganten D, Wagner J, Zeh K, Bader M, Michel J-B, Paul M, Zimmermann F, Ruf P, Hilgenfeldt U, Ganten U, Kaling M, Bachmann S, Fukamizu A, Mullins JJ, Murakami K (1992) Species specificity of renin kinetics in transgenic rats harboring the human renin and angiotensinogen genes. Proc Natl Acad Sci USA 89:7806–7810

    Article  CAS  PubMed  Google Scholar 

  5. Silva JA Jr, Araujo RC, Baltatu O, Oliveira SM, Tschöpe C, Fink E, Hoffmann S, Plehm R, Chai KX, Chao L, Chao J, Ganten D, Pesquero JB, Bader M (2000) Reduced cardiac hypertrophy and altered blood pressure control in transgenic rats with the human tissue kallikrein gene. FASEB J 14:1858–1860

    CAS  PubMed  Google Scholar 

  6. Langenickel T, Buttgereit J, Pagel-Langenickel I, Lindner M, Beuerlein K, Al-Saadi N, Plehm R, Popova E, Tank J, Dietz R, Willenbrock R, Bader M (2006) Cardiac hypertrophy in transgenic rats expressing a dominant negative mutant of the natriuretic peptide receptor B. Proc Natl Acad Sci USA 103:4735–4740

    Article  CAS  PubMed  Google Scholar 

  7. Bader M, Bohnemeier H, Zollmann FS, Lockley-Jones OE, Ganten D (2000) Transgenic animals in cardiovascular disease research. Exp Physiol 85:713–731

    Article  CAS  PubMed  Google Scholar 

  8. Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    Article  CAS  PubMed  Google Scholar 

  9. Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310

    Article  CAS  PubMed  Google Scholar 

  10. Herold MJ, van den BJ, Seibler J, Reichardt HM (2008) Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats. Proc Natl Acad Sci U S A 105:18507–18512

    Article  CAS  PubMed  Google Scholar 

  11. Kotnik K, Popova E, Todiras M, Mori MA, Alenina N, Seibler J, Bader M (2009) Inducible transgenic rat model for diabetes mellitus based on shRNA-mediated gene knockdown. PLoS One 4:e5124

    Google Scholar 

  12. Doggrell SA, Brown L (1998) Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 39:89–105

    Article  CAS  PubMed  Google Scholar 

  13. Pinto YM, Paul M, Ganten D (1998) Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res 39:77–88

    Article  CAS  PubMed  Google Scholar 

  14. Yagil Y, Yagil C (2001) Genetic models of hypertension in experimental animals. Exp Nephrol 9:1–9

    Article  CAS  PubMed  Google Scholar 

  15. De Champlain J, Krakoff LR, Axelrod J (1967) Catecholamine metabolism in experimental hypertension in the rat. Circ Res 20:136–145

    PubMed  Google Scholar 

  16. Schenk J, McNeill JH (1992) The pathogenesis of DOCA-salt hypertension. J Pharmacol Toxicol Methods 27:161–170

    Article  CAS  PubMed  Google Scholar 

  17. Rees DD, Palmer RM, Schulz R, Hodson HF, Moncada S (1990) Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 101:746–752

    CAS  PubMed  Google Scholar 

  18. Johnson RA, Freeman RH (1992) Sustained hypertension in the rat induced by chronic blockade of nitric oxide production. Am J Hypertens 5:919–922

    CAS  PubMed  Google Scholar 

  19. Ribeiro MO, Antunes E, de Nucci G, Lovisolo SM, Zatz R (1992) Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension 20:298–303

    CAS  PubMed  Google Scholar 

  20. Campbell DJ (2006) L-NAME hypertension: trying to fit the pieces together. J Hypertens 24:33–36

    Article  CAS  PubMed  Google Scholar 

  21. Martinez-Maldonado M (1991) Pathophysiology of renovascular hypertension. Hypertension 17:707–719

    CAS  PubMed  Google Scholar 

  22. Pickering TG (1989) Renovascular hypertension: etiology and pathophysiology. Semin Nucl Med 19:79–88

    Article  CAS  PubMed  Google Scholar 

  23. Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59:347–379

    Article  CAS  PubMed  Google Scholar 

  24. Dickinson CJ, Lawrence JR (1963) A slowly developing pressor response to small concentrations of angiotensin. Its bearing on the pathogenesis of chronic renal hypertension. Lancet 1:1354–1356

    Article  CAS  PubMed  Google Scholar 

  25. Baltatu O, Silva JA Jr, Ganten D, Bader M (2000) The brain renin-angiotensin system modulates angiotensin II-induced hypertension and cardiac hypertrophy. Hypertension 35:409–412

    CAS  PubMed  Google Scholar 

  26. Masugi Y, Oami H, Aihara K, Hashimoto K, Hakozaki T (1965) Renal and pulmonary vascular changes induced by Crotalaria spectabilis in rats. Acta Pathol Jpn 15:407–415

    CAS  PubMed  Google Scholar 

  27. Meyrick B, Gamble W, Reid L (1980) Development of Crotalaria pulmonary hypertension: hemodynamic and structural study. Am J Physiol 239:H692–H702

    CAS  PubMed  Google Scholar 

  28. Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691

    Article  CAS  PubMed  Google Scholar 

  29. Johns TN, Olson BJ (1954) Experimental myocardial infarction. I. A method of coronary occlusion in small animals. Ann Surg 140:675–682

    Article  CAS  PubMed  Google Scholar 

  30. Goldman S, Raya TE (1995) Rat infarct model of myocardial infarction and heart failure. J Card Fail 1:169–177

    Article  CAS  PubMed  Google Scholar 

  31. Wayman NS, McDonald MC, Chatterjee PK, Thiemermann C (2003) Models of coronary artery occlusion and reperfusion for the discovery of novel antiischemic and antiinflammatory drugs for the heart. Methods Mol Biol 225:199–208

    CAS  PubMed  Google Scholar 

  32. Nair KG, Cutilletta AF, Zak R, Koide T, Rabinowitz M (1968) Biochemical correlates of cardiac hypertrophy. I. Experimental model; changes in heart weight, RNA content, and nuclear RNA polymerase activity. Circ Res 23:451–462

    CAS  PubMed  Google Scholar 

  33. Barbosa ME, Alenina N, Bader M (2005) Induction and analysis of cardiac hypertrophy in transgenic animal models. Methods Mol Med 112:339–352

    CAS  PubMed  Google Scholar 

  34. Flaim SF, Minteer WJ, Nellis SH, Clark DP (1979) Chronic arteriovenous shunt: evaluation of a model for heart failure in rat. Am J Physiol 236:H698–H704

    CAS  PubMed  Google Scholar 

  35. Garcia R, Diebold S (1990) Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res 24:430–432

    Article  CAS  PubMed  Google Scholar 

  36. Zierhut W, Zimmer HG (1989) Significance of myocardial alpha- and beta-adrenoceptors in catecholamine-induced cardiac hypertrophy. Circ Res 65:1417–1425

    CAS  PubMed  Google Scholar 

  37. Stanton HC, Brenner G, Mayfield ED Jr (1969) Studies on isoproterenol-induced cardiomegaly in rats. Am Heart J 77:72–80

    Article  CAS  PubMed  Google Scholar 

  38. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    CAS  PubMed  Google Scholar 

  39. Hiramatsu K, Kassell NF, Goto Y, Soleau S, Lee KS (1993) A reproducible model of reversible, focal, neocortical ischemia in Sprague-Dawley rat. Acta Neurochir (Wien) 120:66–71

    Article  CAS  Google Scholar 

  40. Yanamoto H, Nagata I, Niitsu Y, Xue JH, Zhang Z, Kikuchi H (2003) Evaluation of MCAO stroke models in normotensive rats: standardized neocortical infarction by the 3VO technique. Exp Neurol 182:261–274

    Article  PubMed  Google Scholar 

  41. Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293

    CAS  PubMed  Google Scholar 

  42. Louis WJ, Howes LG (1990) Genealogy of the spontaneously hypertensive rat and Wistar-Kyoto rat strains: implications for studies of inherited hypertension. J Cardiovasc Pharmacol 16(Suppl 7):S1–S5

    PubMed  Google Scholar 

  43. Petretto E, Sarwar R, Grieve I, Lu H, Kumaran MK, Muckett PJ, Mangion J, Schroen B, Benson M, Punjabi PP, Prasad SK, Pennell DJ, Kiesewetter C, Tasheva ES, Corpuz LM, Webb MD, Conrad GW, Kurtz TW, Kren V, Fischer J, Hubner N, Pinto YM, Pravenec M, Aitman TJ, Cook SA (2008) Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat Genet 40:546–552

    Article  CAS  PubMed  Google Scholar 

  44. Pravenec M, Churchill PC, Churchill MC, Viklicky O, Kazdova L, Aitman TJ, Petretto E, Hubner N, Wallace CA, Zimdahl H, Zidek V, Landa V, Dunbar J, Bidani A, Griffin K, Qi N, Maxova M, Kren V, Mlejnek P, Wang J, Kurtz TW (2008) Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat Genet 40:952–954

    Article  CAS  PubMed  Google Scholar 

  45. Bianchi G, Ferrari P, Barber BR (1984) The Milan hypertensive strain. In: de Jong W (ed) Experimental and genetic models of hypertension. Elsevier Science, Oxford, pp 328–349

    Google Scholar 

  46. Menini S, Ricci C, Iacobini C, Bianchi G, Pugliese G, Pesce C (2004) Glomerular number and size in Milan hypertensive and normotensive rats: their relationship to susceptibility and resistance to hypertension and renal disease. J Hypertens 22:2185–2192

    Article  CAS  PubMed  Google Scholar 

  47. Bianchi G, Tripodi G (2003) Genetics of hypertension: the adducin paradigm. Ann N Y Acad Sci 986:660–668

    Article  CAS  PubMed  Google Scholar 

  48. Vincent M, Dupont J, Sassard J (1979) Simultaneous selection of spontaneously hypertensive, normotensive and lowtensive rats. Jpn Heart J 20(S1):135–137

    Google Scholar 

  49. Sassard J, Lo M, Liu KL (2003) Lyon genetically hypertensive rats: an animal model of “low renin hypertension”. Acta Pharmacol Sin 24:1–6

    CAS  PubMed  Google Scholar 

  50. Smirk FH, Hall WH (1958) Inherited hypertension in rats. Nature 182:727–728

    Article  CAS  PubMed  Google Scholar 

  51. Jones DR, Dowd DA (1970) Development of elevated blood pressure in young genetically hypertensive rats. Life Sci 9:247–250

    Article  CAS  PubMed  Google Scholar 

  52. Ledingham JM, Laverty R (1998) Renal afferent arteriolar structure in the genetically hypertensive (GH) rat and the ability of losartan and enalapril to cause structural remodelling. J Hypertens 16:1945–1952

    Article  CAS  PubMed  Google Scholar 

  53. Vrana A, Kazdova L (1990) The hereditary hypertriglyceridemic nonobese rat: an experimental model of human hypertriglyceridemia. Transplant Proc 22:2579

    CAS  PubMed  Google Scholar 

  54. Heller J, Hellerova S, Dobesova Z, Kunes J, Zicha J (1993) The Prague Hypertensive Rat: a new model of genetic hypertension. Clin Exp Hypertens 15:807–818

    Article  CAS  PubMed  Google Scholar 

  55. Dahl LK, Heine M, Tassinari L (1962) Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 194:480–482

    Article  CAS  PubMed  Google Scholar 

  56. Rapp JP (1982) Dahl salt-susceptible and salt-resistant rats. A review. Hypertension 4:753–763

    CAS  PubMed  Google Scholar 

  57. Bashyam H (2007) Lewis Dahl and the genetics of salt-induced hypertension. J Exp Med 204:1507

    Article  CAS  PubMed  Google Scholar 

  58. Rodriguez-Sargent C, Cangiano JL, Fernandez-Repollet E, Estape-Wainwright E, Torres-Negron I, Martinez-Maldonado M (1988) A new model of genetic hypertension in rats with superficial glomeruli. J Hypertens Suppl 6:S29–S32

    Google Scholar 

  59. Ben Ishay D, Saliternik R, Welner A (1972) Separation of two strains of rats with inbred dissimilar sensitivity to Doca-salt hypertension. Experientia 28:1321–1322

    Article  CAS  PubMed  Google Scholar 

  60. Yagil C, Katni G, Rubattu S, Stolpe C, Kreutz R, Lindpaintner K, Ganten D, Ben Ishay D, Yagil Y (1996) Development, genotype and phenotype of a new colony of the Sabra hypertension prone (SBH/y) and resistant (SBN/y) rat model of salt sensitivity and resistance. J Hypertens 14:1175–1182

    Article  CAS  PubMed  Google Scholar 

  61. Yagil Y, Yagil C (1998) Genetic basis of salt-susceptibility in the Sabra rat model of hypertension. Kidney Int 53:1493–1500

    Article  CAS  PubMed  Google Scholar 

  62. Markel AL (1985) Experimental model of inherited arterial hypertension, conditioned by stress. Izvestia Akad Nauk SSSR Seria Biol 3:466–469

    Google Scholar 

  63. Maslova LN, Bulygina VV, Markel AL (2002) Chronic stress during prepubertal development: immediate and long-lasting effects on arterial blood pressure and anxiety-related behavior. Psychoneuroendocrinology 27:549–561

    Article  CAS  PubMed  Google Scholar 

  64. Castle WE, King HD (1947) Linkage studies of the rat. VIII. Fawn, a new colour dilution gene. J Hered 38:341–344

    CAS  PubMed  Google Scholar 

  65. Prieur DJ, Meyers KM (1984) Genetics of the fawn-hooded rat strain. The coat color dilution and platelet storage pool deficiency are pleiotropic effects of the autosomal recessive red-eyed dilution gene. J Hered 75:349–352

    CAS  PubMed  Google Scholar 

  66. Oiso N, Riddle SR, Serikawa T, Kuramoto T, Spritz RA (2004) The rat Ruby ( R) locus is Rab38: identical mutations in Fawn-hooded and Tester-Moriyama rats derived from an ancestral Long Evans rat sub-strain. Mamm Genome 15:307–314

    Article  CAS  PubMed  Google Scholar 

  67. Morecroft I, Dempsie Y, Bader M, Walther DJ, Kotnik K, Loughlin L, Nilsen M, MacLean MR (2007) Effect of tryptophan hydroxylase 1 deficiency on the development of hypoxia-induced pulmonary hypertension. Hypertension 49:232–236

    Article  CAS  PubMed  Google Scholar 

  68. Walther DJ, Peter JU, Winter S, Höltje M, Paulmann N, Grohmann M, Vowinckel J, Alamo-Bethencourt V, Wilhelm CS, Ahnert-Hilger G, Bader M (2003) Serotonylation of small GTPases is a signal transduction pathway that triggers platelet α-granule release. Cell 115:851–862

    Article  CAS  PubMed  Google Scholar 

  69. Nagaoka T, Gebb SA, Karoor V, Homma N, Morris KG, McMurtry IF, Oka M (2006) Involvement of RhoA/Rho kinase signaling in pulmonary hypertension of the fawn-hooded rat. J Appl Physiol 100:996–1002

    Article  CAS  PubMed  Google Scholar 

  70. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–2641

    Article  CAS  PubMed  Google Scholar 

  71. Brown DM, Provoost AP, Daly MJ, Lander ES, Jacob HJ (1996) Renal disease susceptibility and hypertension are under independent genetic control in the fawn-hooded rat. Nat Genet 12:44–51

    Article  CAS  PubMed  Google Scholar 

  72. Mccune S, Baker PB, Stills FH (1990) SHHF/Mcc-cp rat: model of obesity, non-insulin dependent diabetes, and congestive heart failure. ILAR News 32:23–27

    Google Scholar 

  73. Monti J, Fischer J, Paskas S, Heinig M, Schulz H, Gosele C, Heuser A, Fischer R, Schmidt C, Schirdewan A, Gross V, Hummel O, Maatz H, Patone G, Saar K, Vingron M, Weldon SM, Lindpaintner K, Hammock BD, Rohde K, Dietz R, Cook SA, Schunck WH, Luft FC, Hubner N (2008) Soluble epoxide hydrolase is a susceptibility factor for heart failure in a rat model of human disease. Nat Genet 40:529–537

    Article  CAS  PubMed  Google Scholar 

  74. Okamoto H, Yamori Y, Nagaoka A (1974) The establishment of the stroke prone hypertensive rat. Circ Res 34(Suppl I):I-143–I-153

    Google Scholar 

  75. Yamori Y, Horie R, Tanase H, Fujiwara K, Nara Y, Lovenberg W (1984) Possible role of nutritional factors in the incidence of cerebral lesions in stroke-prone spontaneously hypertensive rats. Hypertension 6:49–53

    CAS  PubMed  Google Scholar 

  76. Smeda JS (1989) Hemorrhagic stroke development in spontaneously hypertensive rats fed a North American, Japanese-style diet. Stroke 20:1212–1218

    CAS  PubMed  Google Scholar 

  77. McBride MW, Brosnan MJ, Mathers J, McLellan LI, Miller WH, Graham D, Hanlon N, Hamilton CA, Polke JM, Lee WK, Dominiczak AF (2005) Reduction of Gstm1 expression in the stroke-prone spontaneously hypertension rat contributes to increased oxidative stress. Hypertension 45:786–792

    Article  CAS  PubMed  Google Scholar 

  78. Rentzsch B, Todiras M, Iliescu R, Popova E, Campos LA, Oliveira ML, Baltatu OC, Santos RA, Bader M (2008) Transgenic ACE2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension 52:967–973

    Article  CAS  PubMed  Google Scholar 

  79. Böhm M, Lippoldt A, Wienen W, Ganten D, Bader M (1996) Reduction of cardiac hypertrophy in TGR(mREN2)27 by angiotensin II receptor blockade. Mol Cell Biochem 163–164:217–221

    Article  PubMed  Google Scholar 

  80. Lee MA, Böhm M, Paul M, Bader M, Ganten U, Ganten D (1996) Physiological characterization of the hypertensive transgenic rat TGR(mREN2)27. Am J Physiol 270:E919–E929

    CAS  PubMed  Google Scholar 

  81. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, Andre S, Crijns HJ, Gabius HJ, Maessen J, Pinto YM (2004) Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110:3121–3128

    Article  CAS  PubMed  Google Scholar 

  82. Kantachuvesiri S, Fleming S, Peters J, Peters B, Brooker G, Lammie AG, McGrath I, Kotelevtsev Y, Mullins JJ (2001) Controlled hypertension, a transgenic toggle switch reveals differential mechanisms underlying vascular disease. J Biol Chem 276:36727–36733

    Article  CAS  PubMed  Google Scholar 

  83. Peters B, Grisk O, Becher B, Wanka H, Kuttler B, Ludemann J, Lorenz G, Rettig R, Mullins JJ, Peters J (2008) Dose-dependent titration of prorenin and blood pressure in Cyp1a1ren-2 transgenic rats: absence of prorenin-induced glomerulosclerosis. J Hypertens 26:102–109

    Article  CAS  PubMed  Google Scholar 

  84. Mitchell KD, Bagatell SJ, Miller CS, Mouton CR, Seth DM, Mullins JJ (2006) Genetic clamping of renin gene expression induces hypertension and elevation of intrarenal Ang II levels of graded severity in Cyp1a1-Ren2 transgenic rats. J Renin Angiotensin Aldosterone Syst 7:74–86

    Article  CAS  PubMed  Google Scholar 

  85. Howard LL, Patterson ME, Mullins JJ, Mitchell KD (2005) Salt-sensitive hypertension develops after transient induction of ANG II-dependent hypertension in Cyp1a1-Ren2 transgenic rats. Am J Physiol Renal Physiol 288:F810–F815

    Article  CAS  PubMed  Google Scholar 

  86. Luft FC, Mervaala E, Müller DN, Gross V, Schmidt F, Park JK, Schmitz C, Lippoldt A, Breu V, Dechend R, Dragun D, Schneider W, Ganten D, Haller H (1999) Hypertension-induced end-organ damage: a new transgenic approach to an old problem. Hypertension 33:212–218

    CAS  PubMed  Google Scholar 

  87. Pilz B, Shagdarsuren E, Wellner M, Fiebeler A, Dechend R, Gratze P, Meiners S, Feldman DL, Webb RL, Garrelds IM, Jan Danser AH, Luft FC, Muller DN (2005) Aliskiren, a human renin inhibitor, ameliorates cardiac and renal damage in double-transgenic rats. Hypertension 46:569–576

    Article  CAS  PubMed  Google Scholar 

  88. Bohlender J, Ganten D, Luft FC (2000) Rats transgenic for human renin and human angiotensinogen as a model for gestational hypertension. J Am Soc Nephrol 11:2056–2061

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bader, M. (2010). Rat Models of Cardiovascular Diseases. In: Anegon, I. (eds) Rat Genomics. Methods in Molecular Biology, vol 597. Humana Press. https://doi.org/10.1007/978-1-60327-389-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-389-3_27

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-388-6

  • Online ISBN: 978-1-60327-389-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics