Skip to main content

Phage Display Technology

Identification of Peptides as Model Ligands for Affinity Chromatography

  • Protocol
Affinity Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 147))

Abstract

Protein A has long been the ligand of choice in the affinity purification of immunoglobulin G1 (IgG1) monoclonal antibodies (see Notes 1 and 2). However, current research efforts (19) have been focused on the discovery of small molecules (peptides or peptidomimetics) that share similar binding characteristics with protein A but are more cost effective owing to small size (for ease of synthesis) and stability (for ease of regeneration). The following methods were developed as part of a proof of principle study (1) to determine whether phage display technology could be used to identify peptides as leads in the customization of ligands for affinity chromatography (see Note 3) and (2) to identify a peptide or peptidomimetic for use as a protein A alternative in the affinity purification of monoclonal antibodies. In this study, the constant region (pFc’ fragments; see Note 4) of an IgG1 monoclonal antibody, denoted humanized anti-Tac (HAT), was used as the target for phage display in this study. HAT is a humanized monoclonal antibody against the low-affinity p55 subunit of the interleukin-2 (IL-2) receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braisted A. C. and Wells J. A. (1996) Minimizing a binding domain from protein A. Proc. Natl. Acad. Sci USA 93, 5688–5692.

    Article  PubMed  CAS  Google Scholar 

  2. Li R., Dowd V., Stewart D. J., Burton S. J., and Lowe C. R. (1998) Design, synthesis, and application of a protein A mimetic. Nat. Biotechnol. 16, 190–195.

    Article  PubMed  CAS  Google Scholar 

  3. Fassina G., Verdoliva A., Palombo G., Ruvo M., and Cassini G. (1998) Immunoglobulins specificity of TG1 9318: a novel synthetic ligand for antibody affinity purification. J. Molec. Recogn. 11, 12–133.

    Google Scholar 

  4. Guerrier L, Flayeux I., Schwarz A., Fassina G. and Boschetti E. (1998) IRIS: an innovative protein A-peptidomimetic solid phase medium for antibody purification. J. Molec. Recogn. 11, 107–109.

    Article  CAS  Google Scholar 

  5. Palombo G., DeFalco S., Tortora G., Cassani G., and Fassina G. (1998) A synthetic ligand for IgA affinity purification. J. Molec. Recogn. 11, 243–246.

    Article  CAS  Google Scholar 

  6. Palombo G., Rossi M., Cassani G., and Fassina G. (1998) Affinity purification of mouse monoclonal IgE using a protein A mimetic ligand [TG19318] immobilized on solid supports. J. Molec. Recogn. 11, 247–249.

    Article  CAS  Google Scholar 

  7. Palombo G., Verdoliva A., and Fassina G (1998) Affinity purification of immu-noglobulin M using a novel synthetic ligand. J. Chromatogr. B Biomed. Sci. Appl. 715, 137–145.

    Article  PubMed  CAS  Google Scholar 

  8. Ehrlich G. K. and Bailon P. (1998) Identification of peptides that bind to the constant region of a humanized IgG1 monoclonal antibody using phage display. J. Molec. Recogn. 11, 121–125.

    Article  CAS  Google Scholar 

  9. Sengupta J., Sinha P., Mukhopadhyay C., and Ray P. K. (1999) Molecular modeling and experimental approaches toward designing a minimalist protein having Fc-binding activity of Staphylococcal protein A. Biochem. Biophys. Res. Commun. 256, 6–12.

    Article  PubMed  CAS  Google Scholar 

  10. Queen C., Schneider W. P., Selick H. E., Payne P. W., Landolfi N., Duncan J.F., Avdalovic N. M., Levitt M., Junghans R. P., and Waldman T. A. (1989) A humanized antibody that binds to the interleukin 2 receptor. Proc. Natl. Acad. Sci. USA 86, 10,029–10,033.

    Article  PubMed  CAS  Google Scholar 

  11. Junghans R. P., Waldman T. A., Landolfi N. F., Avdalovic N. M., Schneider W. P., and Queen C. (1990) Anti-Tac-H, a humanized antibody to the interleukin 2 receptor with new features for immunotherapy in malignant and immune disorders. Cancer Res. 50, 1495–1502.

    PubMed  CAS  Google Scholar 

  12. Bailon P., Weber D. V., Keeney R. F., Fredericks J. E., Smith C., Familletti P. C., and Smart J. E. (1987) Receptor-affinity chromatography: A one-step purification for recombinant interleukin-2. Bio/Technology 5, 1195–1198.

    Article  CAS  Google Scholar 

  13. Bailon P. and Weber D. V. (1988) Receptor-affinity chromatography. Nature (London) 335, 839–840.

    Article  CAS  Google Scholar 

  14. Hakimi J., Seals C., Anderson L. E., Podlaski F. J., Lin P., Danho W., Jenson J. S., Perkins A., Donadio P. E., Familletti P. C., Pan Y-C.E., Tsien W.-H., Chizzonite R. A., Casabo L., Nelson D. L., and Cullen B. R. (1987) Biochemical and functional analysis of soluble human interleukin-2 receptor produced in rodent cells. J. Biol. Chem. 262, 17,336–17,341.

    PubMed  CAS  Google Scholar 

  15. Weber D. V., Keeney R. F., Familletti P. C., and Bailon P. (1988) Medium-scale ligand-affinity purification of two soluble forms of human interleukin-2 receptor. J. Chrom. Biomed. Appl. 431, 55–63.

    Article  CAS  Google Scholar 

  16. Uhlen M., Guss B., Nilsson B., Gatenbeck S., Philipson L., and Lindberg M. (1984) Complete sequence of the Staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J. Biol. Chem. 259, 1695–1702.

    PubMed  CAS  Google Scholar 

  17. Nilsson B., Moks T., Jansson B., Abrahmseen L., Elmblad A., Holmgren E., Herichson C., Jones T. A., and Uhlen M. (1987) A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng. 1, 107–113.

    Article  PubMed  CAS  Google Scholar 

  18. Maclennan J. (1997) The generation of process suitable, rugged, targeted affinity ligands using phage display technology. Twelfth Sympsium on Affinity Interactions: Fundamentals and Applications of Biomolecular Recognition. Abstract L30.

    Google Scholar 

  19. Torigoe H., Shimada I., Waelchli M., Saito A., Sato M., and Arata Y. (1990) 15N nuclear magnetic resonance studies of the B domain of staphylococcal protein A: sequence specific assignments of the imide 15N resonances of the proline residues and the interaction with human immunoglobulin G. FEBS Lett. 269, 174–176.

    Article  PubMed  CAS  Google Scholar 

  20. Torigoe H., Shimada I., Saito A., Sato M., and Arata Y. (1990) Sequential 1H NMR assignments and secondary structure of the B domain of staphylococcal protein A: structural changes between the free B domain in solution and the Fc-boundB domain in crystal. Biochemistry. 29, 8787–8793.

    Article  PubMed  CAS  Google Scholar 

  21. Gouda H., Torigoe H., Saito A., Sato M., Arata Y., and Shimada I. (1992) Three-dimensional solution structure of the B domain of staphylococcal protein A: comparisons of the solution and crystal structures. Biochemistry 31, 9665–9672.

    Article  PubMed  CAS  Google Scholar 

  22. Jendeberg L., Tashiro M., Tejero R., Lyons B. A., Uhlen M., Montelione G. T., and Nilsson B. (1996) The mechanism of binding staphylococcal protein A to immunoglobin G does not involve helix unwinding. Biochemistry 35, 22–31.

    Article  PubMed  CAS  Google Scholar 

  23. Lyons B. A., Tashiro M., Cedergren L., Nilsson B., and Montelione G. T. (1993) An improved strategy for determining resonance assignments for isotopi-cally enriched proteins and its application to an engineered domain of staphylococcal protein A. Biochemistry 32, 7839–7845.

    Article  PubMed  CAS  Google Scholar 

  24. Tashiro M. and Montelione G. T. (1995) Structures of bacterial immunoglobu-lin-binding domains and their complexes with immunoglobulins. Curr. Opin. Struct. Biol. 5, 471–481.

    Article  PubMed  CAS  Google Scholar 

  25. McDowell R. S., Blackburn B. K., Gadek T. R., McGee L. R., Rawson T., Reynolds M. E., Robarge K. D., Somers T. C., Thorsett E. D., Tischler M., Webb R. R., and Venuti M. C. (1994) From peptide to non-peptide. 2. The de novo design of potent, non-peptidal inhibitors of platelet aggregation based on a benzodiazepine scaffold. J. Am. Chem. Soc. 116, 5077–5083.

    Article  CAS  Google Scholar 

  26. Ley C. A. (1997) Custom affinity ligands from phage display for large-scale affinity purification. IBC International Conference on Display Technologies. Lake Tahoe, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Ehrlich, G.K., Bailon, P., Berthold, W. (2000). Phage Display Technology. In: Bailon, P., Ehrlich, G.K., Fung, WJ., Berthold, W. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 147. Humana Press. https://doi.org/10.1007/978-1-60327-261-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-261-2_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-694-9

  • Online ISBN: 978-1-60327-261-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics