Skip to main content

Prediction of Posttranslational Modification of Proteins from Their Amino Acid Sequence

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 609))

Abstract

If posttranslational modifications (PTMs) are chemical alterations of the protein primary structure during the protein’s life cycle as a result of an enzymatic reaction, then the motif in the substrate protein sequence that is recognized by the enzyme can serve as basis for predictor construction that recognizes PTM sites in database sequences. The recognition motif consists generally of two regions: first, a small, central segment that enters the catalytic cleft of the enzyme and that is specific for this type of PTM and, second, a sequence environment of about 10 or more residues with linker characteristics (a trend for small and polar residues with flexible backbone) on either side of the central part that are needed to provide accessibility of the central segment to the enzyme’s catalytic site. In this review, we consider predictors for cleavage of targeting signals, lipid PTMs, phosphorylation, and glycosylation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Eisenhaber, F., Eisenhaber, B., Maurer-Stroh, S. (2003) Prediction of Post-translational modifications from amino acid sequence: problems, pitfalls, methodological hints. In Andrade, M. M. (ed.), Bioinformatics and Genomes: Current Perspectives. Horizon Scientific Press, Wymondham, pp. 81–105.

    Google Scholar 

  2. Eisenhaber, F. (2006) Prediction of protein function: two basic concepts and one practical recipe. In Eisenhaber, F. (ed.) Discovering Biomolecular Mechanisms with Computational Biology, 1st edition.Landes Biosciences and Eurekah.com, Georgetown. Chapter 3, pp. 39–54.

    Chapter  Google Scholar 

  3. Eisenhaber, B., Eisenhaber, F. (2007) Posttranslational modifications and subcellular localization signals: indicators of sequence regions without inherent 3D structure? Curr Protein Pept Sci 8, 197–203.

    Article  CAS  PubMed  Google Scholar 

  4. Eisenhaber, B., Eisenhaber, F., Maurer-Stroh, S., Neuberger, G. (2004) Prediction of sequence signals for lipid post-translational modifications: insights from case studies. Proteomics 4, 1614–1625.

    Article  CAS  PubMed  Google Scholar 

  5. Puntervoll, P., Linding, R., Gemund, C., Chabanis-Davidson, S., Mattingsdal, M., Cameron, S., Martin, D. M., Ausiello, G., Brannetti, B., Costantini, A., et al. (2003) ELM server: A new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31, 3625–3630.

    Article  CAS  PubMed  Google Scholar 

  6. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., de, C. E., Langendijk-Genevaux, P. S., Pagni, M., Sigrist, C. J. (2006) The PROSITE database. Nucleic Acids Res 34, D227–D230.

    Article  CAS  PubMed  Google Scholar 

  7. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., Cuche, B. A., de, C. E., Lachaize, C., Langendijk-Genevaux, P. S., Sigrist, C. J. (2008) The 20 years of PROSITE. Nucleic Acids Res 36, D245–D249.

    Article  CAS  PubMed  Google Scholar 

  8. Iakoucheva, L. M., Radivojac, P., Brown, C. J., O’Connor, T. R., Sikes, J. G., Obradovic, Z., Dunker, A. K. (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32, 1037–1049.

    Article  CAS  PubMed  Google Scholar 

  9. Kiemer, L., Bendtsen, J. D., Blom, N. (2005) NetAcet: prediction of N-terminal acetylation sites. Bioinformatics 21, 1269–1270.

    Article  CAS  PubMed  Google Scholar 

  10. Diella, F., Gould, C. M., Chica, C., Via, A., Gibson, T. J. (2008) Phospho.ELM: a database of phosphorylation sites–update 2008. Nucleic Acids Res 36, D240–D244.

    Article  CAS  PubMed  Google Scholar 

  11. Liu, H., Yang, J., Wang, M., Xue, L., Chou, K. C. (2005) Using fourier spectrum analysis and pseudo amino acid composition for prediction of membrane protein types. Protein J 24, 385–389.

    Article  CAS  PubMed  Google Scholar 

  12. Cai, Y. D., Chou, K. C. (2006) Predicting membrane protein type by functional domain composition and pseudo-amino acid composition. J Theor Biol 238, 395–400.

    Article  CAS  PubMed  Google Scholar 

  13. Chou, K. C., Cai, Y. D. (2005) Prediction of membrane protein types by incorporating amphipathic effects. J Chem Inf Model 45, 407–413.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, M., Yang, J., Liu, G. P., Xu, Z. J., Chou, K. C. (2004) Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition. Protein Eng Des Sel 17, 509–516.

    Article  CAS  PubMed  Google Scholar 

  15. Cai, Y. D., Zhou, G. P., Chou, K. C. (2003) Support vector machines for predicting membrane protein types by using functional domain composition. Biophys J 84, 3257–3263.

    Article  CAS  PubMed  Google Scholar 

  16. Cai, Y. D., Liu, X. J., Chou, K. C. (2001) Artificial neural network model for predicting membrane protein types. J Biomol Struct Dyn 18, 607–610.

    CAS  PubMed  Google Scholar 

  17. Chou, K. C., Elrod, D. W. (1999) Prediction of membrane protein types and subcellular locations. Proteins 34, 137–153.

    Article  CAS  PubMed  Google Scholar 

  18. O’Connor, E., Eisenhaber, B., Dalley, J., Wang, T., Missen, C., Bulleid, N., Bishop, P. N., Trump, D. (2005) Species specific membrane anchoring of nyctalopin, a small leucine-rich repeat protein. Hum Mol Genet 14, 1877–1887.

    Article  PubMed  Google Scholar 

  19. Eisenhaber, B., Bork, P., Eisenhaber, F. (1999) Prediction of potential GPI-modification sites in proprotein sequences. J Mol Biol 292, 741–758.

    Article  CAS  PubMed  Google Scholar 

  20. Maurer-Stroh, S., Eisenhaber, B., Eisenhaber, F. (2002) N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J Mol Biol 317, 541–557.

    Article  CAS  PubMed  Google Scholar 

  21. Maurer-Stroh, S., Eisenhaber, B., Eisenhaber, F. (2002) N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences. J Mol Biol 317, 523–540.

    Article  CAS  PubMed  Google Scholar 

  22. Bologna, G., Yvon, C., Duvaud, S., Veuthey, A. L. (2004) N-Terminal myristoylation predictions by ensembles of neural networks. Proteomics 4, 1626–1632.

    Article  CAS  PubMed  Google Scholar 

  23. Bendtsen, J. D., Nielsen, H., von, H. G., Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340, 783–795.

    Article  PubMed  Google Scholar 

  24. Kall, L., Krogh, A., Sonnhammer, E. L. (2007) Advantages of combined transmembrane topology and signal peptide prediction – the Phobius web server. Nucleic Acids Res 35, W429–W432.

    Article  PubMed  Google Scholar 

  25. Emanuelsson, O., Brunak, S., von, H. G., Nielsen, H. (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2, 953–971.

    Article  CAS  PubMed  Google Scholar 

  26. Neuberger, G., Maurer-Stroh, S., Eisenhaber, B., Hartig, A., Eisenhaber, F. (2003) Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J Mol Biol 328, 581–592.

    Article  CAS  PubMed  Google Scholar 

  27. Neuberger, G., Maurer-Stroh, S., Eisenhaber, B., Hartig, A., Eisenhaber, F. (2003) Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences. J Mol Biol 328, 567–579.

    Article  CAS  PubMed  Google Scholar 

  28. Eisenhaber, B., Bork, P., Eisenhaber, F. (1998) Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng 11, 1155–1161.

    Article  CAS  PubMed  Google Scholar 

  29. Eisenhaber, B., Bork, P., Yuan, Y., Loffler, G., Eisenhaber, F. (2000) Automated annotation of GPI anchor sites: case study C. elegans. Trends Biochem Sci 25, 340–341.

    Article  CAS  PubMed  Google Scholar 

  30. Eisenhaber, B., Bork, P., Eisenhaber, F. (2001) Post-translational GPI lipid anchor modification of proteins in kingdoms of life: analysis of protein sequence data from complete genomes. Protein Eng 14, 17–25.

    Article  CAS  PubMed  Google Scholar 

  31. Eisenhaber, B., Wildpaner, M., Schultz, C. J., Borner, G. H., Dupree, P., Eisenhaber, F. (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol 133, 1691–1701.

    Article  CAS  PubMed  Google Scholar 

  32. Eisenhaber, B., Schneider, G., Wildpaner, M., Eisenhaber, F. (2004) A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 337, 243–253.

    Article  CAS  PubMed  Google Scholar 

  33. Maurer-Stroh, S., Eisenhaber, F. (2004) Myristoylation of viral and bacterial proteins. Trends Microbiol 12, 178–185.

    Article  CAS  PubMed  Google Scholar 

  34. Maurer-Stroh, S., Gouda, M., Novatchkova, M., Schleiffer, A., Schneider, G., Sirota, F. L., Wildpaner, M., Hayashi, N., Eisenhaber, F. (2004) MYRbase: analysis of genome-wide glycine myristoylation enlarges the functional spectrum of eukaryotic myristoylated proteins. Genome Biol 5, R21.

    Article  PubMed  Google Scholar 

  35. Benetka, W., Mehlmer, N., Maurer-Stroh, S., Sammer, M., Koranda, M., Neumuller, R., Betschinger, J., Knoblich, J. A., Teige, M., Eisenhaber, F. (2008) Experimental testing of predicted myristoylation targets involved in asymmetric cell division and calcium-dependent signalling. Cell Cycle 7, 3709–3719.

    Article  CAS  PubMed  Google Scholar 

  36. Maurer-Stroh, S., Eisenhaber, F. (2005) Refinement and prediction of protein prenylation motifs. Genome Biol 6, R55.

    Article  PubMed  Google Scholar 

  37. Maurer-Stroh, S., Koranda, M., Benetka, W., Schneider, G., Sirota, F. L., Eisenhaber, F. (2007) Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comput Biol 3, e66.

    Article  PubMed  Google Scholar 

  38. Benetka, W., Koranda, M., Maurer-Stroh, S., Pittner, F., Eisenhaber, F. (2006) Farnesylation or geranylgeranylation? Efficient assays for testing protein prenylation in vitro and in vivo. BMC Biochem 7, 6.

    Article  PubMed  Google Scholar 

  39. Benetka, W., Koranda, M., Eisenhaber, F. (2006) Protein prenylation: an (almost) comprehensive overview on discovery history, enzymology and significance in physiology and disease. Chemical Monthly 137, 1241–1281.

    Article  CAS  Google Scholar 

  40. Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y., Yao, X. (2008) CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21, 639–644.

    Article  CAS  PubMed  Google Scholar 

  41. Eisenhaber, B., Maurer-Stroh, S., Novatchkova, M., Schneider, G., Eisenhaber, F. (2003) Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins. Bioessays 25, 367–385.

    Article  CAS  PubMed  Google Scholar 

  42. Fankhauser, N., Maser, P. (2005) Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 21, 1846–1852.

    Article  CAS  PubMed  Google Scholar 

  43. Borner, G. H., Lilley, K. S., Stevens, T. J., Dupree, P. (2003) Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol 132, 568–577.

    Article  CAS  PubMed  Google Scholar 

  44. Moran, P., Caras, I. W. (1994) Requirements for glycosylphosphatidylinositol attachment are similar but not identical in mammalian cells and parasitic protozoa. J Cell Biol 125, 333–343.

    Article  CAS  PubMed  Google Scholar 

  45. Caras, I. W., Weddell, G. N., Williams, S. R. (1989) Analysis of the signal for attachment of a glycophospholipid membrane anchor. J Cell Biol 108, 1387–1396.

    Article  CAS  PubMed  Google Scholar 

  46. Udenfriend, S., Kodukula, K. (1995) How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu Rev Biochem 64, 563–591.

    CAS  PubMed  Google Scholar 

  47. Emanuelsson, O., Brunak, S., von, H. G., Nielsen, H. (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2, 953–971.

    Article  CAS  PubMed  Google Scholar 

  48. Howell, S., Lanctot, C., Boileau, G., Crine, P. (1994) A cleavable N-terminal signal peptide is not a prerequisite for the biosynthesis of glycosylphosphatidylinositol-anchored proteins. J Biol Chem 269, 16993–16996.

    CAS  PubMed  Google Scholar 

  49. Nagy, A., Hegyi, H., Farkas, K., Tordai, H., Kozma, E., Banyai, L., Patthy, L. (2008) Identification and correction of abnormal, incomplete and mispredicted proteins in public databases. BMC Bioinformatics 9, 353.

    Article  PubMed  Google Scholar 

  50. Poisson, G., Chauve, C., Chen, X., Bergeron, A. (2007) FragAnchor: a large-scale predictor of glycosylphosphatidylinositol anchors in eukaryote protein sequences by qualitative scoring. Genomics Proteomics Bioinformatics 5, 121–130.

    Article  CAS  PubMed  Google Scholar 

  51. Pierleoni, A., Martelli, P. L., Casadio, R. (2008) PredGPI: a GPI-anchor predictor. BMC Bioinformatics 9, 392.

    Article  PubMed  Google Scholar 

  52. Johnson, S. A., Hunter, T. (2005) Kinomics: methods for deciphering the kinome. Nat Methods 2, 17–25.

    Article  CAS  PubMed  Google Scholar 

  53. Linding, R., Jensen, L. J., Pasculescu, A., Olhovsky, M., Colwill, K., Bork, P., Yaffe, M. B., Pawson, T. (2008) NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res 36, D695–D699.

    Article  CAS  PubMed  Google Scholar 

  54. Neuberger, G., Schneider, G., Eisenhaber, F. (2007) pkaPS: prediction of protein kinase A phosphorylation sites with the simplified kinase-substrate binding model. Biol Direct 2, 1.

    Article  PubMed  Google Scholar 

  55. Wong, Y. H., Lee, T. Y., Liang, H. K., Huang, C. M., Wang, T. Y., Yang, Y. H., Chu, C. H., Huang, H. D., Ko, M. T., Hwang, J. K. (2007) KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res 35, W588–W594.

    Article  PubMed  Google Scholar 

  56. Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S., Brunak, S. (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633–1649.

    Article  CAS  PubMed  Google Scholar 

  57. Blom, N., Gammeltoft, S., Brunak, S. (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294, 1351–1362.

    Article  CAS  PubMed  Google Scholar 

  58. Ingrell, C. R., Miller, M. L., Jensen, O. N., Blom, N. (2007) NetPhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics 23, 895–897.

    Article  CAS  PubMed  Google Scholar 

  59. Kim, J. H., Lee, J., Oh, B., Kimm, K., Koh, I. (2004) Prediction of phosphorylation sites using SVMs. Bioinformatics 20, 3179–3184.

    Article  CAS  PubMed  Google Scholar 

  60. Xue, Y., Ren, J., Gao, X., Jin, C., Wen, L., Yao, X. (2008) GPS 2.0: Prediction of kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics 7, 1598–1608.

    Article  CAS  PubMed  Google Scholar 

  61. Saunders, N. F., Brinkworth, R. I., Huber, T., Kemp, B. E., Kobe, B. (2008) Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites. BMC Bioinformatics 9, 245.

    Article  PubMed  Google Scholar 

  62. Obenauer, J. C., Cantley, L. C., Yaffe, M. B. (2003) Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31, 3635–3641.

    Article  CAS  PubMed  Google Scholar 

  63. Neuberger, G., Kunze, M., Eisenhaber, F., Berger, J., Hartig, A., Brocard, C. (2004) Hidden localization motifs: naturally occurring peroxisomal targeting signals in non-peroxisomal proteins. Genome Biol 5, R97.

    Article  PubMed  Google Scholar 

  64. Gupta, R., Brunak, S. (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 310–322.

    Google Scholar 

  65. Julenius, K., Molgaard, A., Gupta, R., Brunak, S. (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15, 153–164.

    Article  CAS  PubMed  Google Scholar 

  66. Chen, Y. Z., Tang, Y. R., Sheng, Z. Y., Zhang, Z. (2008) Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs. BMC Bioinformatics 9, 101.

    Article  CAS  PubMed  Google Scholar 

  67. Li, S., Liu, B., Zeng, R., Cai, Y., Li, Y. (2006) Predicting O-glycosylation sites in mammalian proteins by using SVMs. Comput Biol Chem 30, 203–208.

    Article  CAS  PubMed  Google Scholar 

  68. Gupta, R., Jung, E., Gooley, A. A., Williams, K. L., Brunak, S., Hansen, J. (1999) Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks. Glycobiology 9, 1009–1022.

    Article  CAS  PubMed  Google Scholar 

  69. Julenius, K. (2007) NetCGlyc 1.0: prediction of mammalian C-mannosylation sites. Glycobiology 17, 868–876.

    Article  CAS  PubMed  Google Scholar 

  70. Johansen, M. B., Kiemer, L., Brunak, S. (2006) Analysis and prediction of mammalian protein glycation. Glycobiology 16, 844–853.

    Article  CAS  PubMed  Google Scholar 

  71. Wang, H., Tachibana, K., Zhang, Y., Iwasaki, H., Kameyama, A., Cheng, L., Guo, J., Hiruma, T., Togayachi, A., Kudo, T. et al. (2003) Cloning and characterization of a novel UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, pp-GalNAc-T14. Biochem Biophys Res Commun 300, 738–744.

    Article  CAS  PubMed  Google Scholar 

  72. Furmanek, A., Hofsteenge, J. (2000) Protein C-mannosylation: facts and questions. Acta Biochim Pol 47, 781–789.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Eisenhaber, B., Eisenhaber, F. (2010). Prediction of Posttranslational Modification of Proteins from Their Amino Acid Sequence. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 609. Humana Press. https://doi.org/10.1007/978-1-60327-241-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-241-4_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-240-7

  • Online ISBN: 978-1-60327-241-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics