Skip to main content

Oligonucleotide Microarrays for Identification of Microbial Pathogens and Detection of Their Virulence-Associated or Drug-Resistance Determinants

  • Protocol
  • First Online:
Biological Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 671))

Abstract

Microarrays are spatially ordered arrays with ligands chemically immobilized in discrete spots on a solid matrix, usually a microscope slide. Microarrays are a high-throughput large-scale screening system enabling simultaneous identification of a large number of labeled target molecules (up to several hundred thousand) that bind specifically to the immobilized ligands of the array. DNA microarrays represent a promising tool for clinical, environmental, and industrial microbiology since the technology allows relatively rapid identification of large number of genetic determinants simultaneously, providing detailed genomic level information regarding the pathogen species, including identification of their virulence-associated factors and the presence of antibiotic resistance genes. In this chapter, we describe key aspects and methodologies important for the development and use of DNA microarrays for microbial diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gillespie, D. and S. Spiegelman, A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol, 1965. 12(3): pp. 829–42.

    Article  CAS  Google Scholar 

  2. Southern, E.M., Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol, 1975. 98(3): pp. 503–17.

    Article  CAS  Google Scholar 

  3. Alwine, J.C., D.J. Kemp, and G.R. Stark, Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci USA, 1977. 74(12): pp. 5350–4.

    Article  CAS  Google Scholar 

  4. Engvall, E. and P. Perlmann, Enzyme-linked immunosorbent assay (Elisa) quantitative assay of immunoglobulin-G. Immunochemistry, 1971. 8(9): pp. 871–4.

    Article  CAS  Google Scholar 

  5. Kafatos, F.C., C.W. Jones, and A. Efstratiadis, Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res, 1979. 7(6): pp. 1541–52.

    Article  CAS  Google Scholar 

  6. Ekins, R., F. Chu, and J. Micallef, High specific activity chemiluminescent and fluorescent markers: their potential application to high sensitivity and ‘multi-analyte’ immunoassays. J Biolumin Chemilumin, 1989. 4(1): pp. 59–78.

    Article  CAS  Google Scholar 

  7. Ekins, R., F. Chu, and E. Biggart, Multispot, multianalyte, immunoassay. Ann Biol Clin (Paris), 1990. 48(9): pp. 655–66.

    CAS  Google Scholar 

  8. Ekins, R. and F.W. Chu, Microarrays: their origins and applications. Trends Biotechnol, 1999. 17(6): pp. 217–8.

    Article  CAS  Google Scholar 

  9. Gupta, R.S. and E. Griffiths, Critical issues in bacterial phylogeny. Theor Popul Biol, 2002. 61(4): pp. 423–34.

    Article  Google Scholar 

  10. Gupta, R.S., The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes. Crit Rev Microbiol, 2004. 30(2): pp. 123–43.

    Article  CAS  Google Scholar 

  11. Karlin, S. and L. Brocchieri, Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. J Mol Evol, 1998. 47(5): pp. 565–77.

    Article  CAS  Google Scholar 

  12. Gupta, R.S. and V. Johari, Signature sequences in diverse proteins provide evidence of a close evolutionary relationship between the Deinococcus-thermus group and cyanobacteria. J Mol Evol, 1998. 46(6): pp. 716–20.

    Article  CAS  Google Scholar 

  13. Ludwig, W. and K.H. Schleifer, Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev, 1994. 15(2–3): pp. 155–73.

    Article  CAS  Google Scholar 

  14. Anthony, R.M., T.J. Brown, and G.L. French, Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide array. J Clin Microbiol, 2000. 38(2): pp. 781–8.

    CAS  Google Scholar 

  15. Olsen, G.J., et al., Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol, 1986. 40: pp. 337–65.

    Article  CAS  Google Scholar 

  16. Hartman, A.B., et al., Sequence and molecular characterization of a multicopy invasion plasmid antigen gene, ipaH, of Shigella flexneri. J Bacteriol, 1990. 172(4): pp. 1905–15.

    CAS  Google Scholar 

  17. Nagano, I., et al., Detection of verotoxin-producing Escherichia coli O157:H7 by multiplex polymerase chain reaction. Microbiol Immunol, 1998. 42(5): pp. 371–6.

    CAS  Google Scholar 

  18. Yu, J. and J.B. Kaper, Cloning and characterization of the eae gene of enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol, 1992. 6(3): pp. 411–7.

    Article  CAS  Google Scholar 

  19. Sazhin, O.V. and S.F. Borisov, Accommodation coefficient of tangential momentum on atomically clean and contaminated surfaces. J Vac Sci Technol A, 2001. 19(5): pp. 2499–503.

    Article  CAS  Google Scholar 

  20. Chizhikov, V., et al., Microarray analysis of microbial virulence factors. Appl Environ Microbiol, 2001. 67(7): pp. 3258–63.

    Article  CAS  Google Scholar 

  21. Volokhov, D., et al., Identification of Listeria species by microarray-based assay. J Clin Microbiol, 2002. 40(12): pp. 4720–8.

    Article  CAS  Google Scholar 

  22. Volokhov, D., et al., Microarray-based identification of thermophilic Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis. J Clin Microbiol, 2003. 41(9): pp. 4071–80.

    Article  CAS  Google Scholar 

  23. Al-Khaldi, S.F., et al., Genotyping of Clostridium perfringens toxins using multiple oligonucleotide microarray hybridization. Mol Cell Probes, 2004. 18(6): pp. 359–67.

    Article  CAS  Google Scholar 

  24. Sergeev, N., et al., Simultaneous analysis of multiple staphylococcal enterotoxin genes by an oligonucleotide microarray assay. J Clin Microbiol, 2004. 42(5): pp. 2134–43.

    Article  CAS  Google Scholar 

  25. Volokhov, D., et al., Identification of Bacillus anthracis by multiprobe microarray hybridization. Diagn Microbiol Infect Dis, 2004. 49(3): pp. 163–71.

    Article  CAS  Google Scholar 

  26. Sergeev, N., et al., Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens Bioelectron, 2004. 20(4): pp. 684–98.

    Article  CAS  Google Scholar 

  27. Wilson, K.H., et al., High-density microarray of small-subunit ribosomal DNA probes. Appl Environ Microbiol, 2002. 68(5): pp. 2535–41.

    Article  CAS  Google Scholar 

  28. Wilson, W.J., et al., Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes, 2002. 16(2): pp. 119–27.

    Article  CAS  Google Scholar 

  29. Volokhov, D., et al., Microarray analysis of erythromycin resistance determinants. J Appl Microbiol, 2003. 95(4): pp. 787–98.

    Article  CAS  Google Scholar 

  30. Call, D.R., et al., Identifying antimicrobial resistance genes with DNA microarrays. Antimicrob Agents Chemother, 2003. 47(10): pp. 3290–5.

    Article  CAS  Google Scholar 

  31. Wade, M.M., et al., Accurate mapping of mutations of pyrazinamide-resistant Mycobacterium tuberculosis strains with a scanning-frame oligonucleotide microarray. Diagn Microbiol Infect Dis, 2004. 49(2): pp. 89–97.

    Article  CAS  Google Scholar 

  32. SantaLucia, J., Jr., A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA, 1998. 95(4): pp. 1460–5.

    Article  CAS  Google Scholar 

  33. Sugimoto, N., et al., Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res, 1996. 24(22): pp. 4501–5.

    Article  CAS  Google Scholar 

  34. Breslauer, K.J., et al., Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA, 1986. 83(11): pp. 3746–50.

    Article  CAS  Google Scholar 

  35. Google, Google Directory>Science>Biology>Bioinformatics>Software. 2008; Available from: http://www.google.com.

  36. Herold, K.E. and A. Rasooly, Oligo Design: a computer program for development of probes for oligonucleotide microarrays. Biotechniques, 2003. 35(6): pp. 1216–21.

    CAS  Google Scholar 

  37. Smith, T.F. and M.S. Waterman, Identification of common molecular subsequences. J Mol Biol, 1981. 147(1): pp. 195–197.

    Article  CAS  Google Scholar 

  38. Lyon, Alignment software. 2008; Available from: http://pbil.univ-lyon1.fr/alignment.html.

  39. Huang, X.Q. and W. Miller, A time-efficient, linear-space local similarity algorithm. Adv Appl Math, 1991. 12(3): pp. 337–357.

    Article  Google Scholar 

  40. Pearson, W., LAlign program, part of the FASTA program set. 2008; Available from: http://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi?rm=lalign, http://www.ch.embnet.org/software/LALIGN_form.html.

  41. Pearson, W.R. and D.J. Lipman, Improved tools for biological sequence comparison. Proc Natl Acad Sci USA, 1988. 85(8): pp. 2444–8.

    Article  CAS  Google Scholar 

  42. Altschul, S.F., et al., Issues in searching molecular sequence databases. Nat Genet, 1994. 6(2): pp. 119–29.

    Article  CAS  Google Scholar 

  43. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): pp. 403–10.

    CAS  Google Scholar 

  44. Larkin, M.A., et al., Clustal W and Clustal X version 2.0. Bioinformatics, 2007. 23(21): pp. 2947–8.

    Article  CAS  Google Scholar 

  45. Clustal, Clustal download site. 2008; Available from: http://www.clustal.org/.

  46. Google, Science>Biology>Biochemistry and Molecular Biology>Methods and Techniques>PCR>Software. 2008; Available from: http://www.google.com.

  47. Bodrossy, L. and A. Sessitsch, Oligonucleotide microarrays in microbial diagnostics. Curr Opin Microbiol, 2004. 7(3): pp. 245–54.

    Article  CAS  Google Scholar 

  48. Schena, M., et al., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995. 270(5235): pp. 467–70.

    Article  CAS  Google Scholar 

  49. Badiee, A., et al., Evaluation of five different cDNA labeling methods for microarrays using spike controls. BMC Biotechnol, 2003. 3(1): p. 23.

    Article  Google Scholar 

  50. Lyon, L.A., M.D. Musick, and M.J. Natan, Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem, 1998. 70(24): pp. 5177–83.

    Article  CAS  Google Scholar 

  51. Lian, W., et al., Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Anal Biochem, 2004. 334(1): pp. 135–44.

    Article  CAS  Google Scholar 

  52. Raychaudhuri, S., et al., Basic microarray analysis: grouping and feature reduction. Trends Biotechnol, 2001. 19(5): pp. 189–93.

    Article  CAS  Google Scholar 

  53. Jarvinen, A.K., et al., Are data from different gene expression microarray platforms comparable? Genomics, 2004. 83(6): pp. 1164–8.

    Article  CAS  Google Scholar 

  54. Yauk, C.L., et al., Comprehensive comparison of six microarray technologies. Nucleic Acids Res, 2004. 32(15): p. e124.

    Article  Google Scholar 

  55. Aguilar, Z.P., W.R. Vandaveer, and I. Fritsch, Self-contained microelectrochemical immunoassay for small volumes using mouse IgG as a model system. Anal Chem, 2002. 74(14): pp. 3321–9.

    Article  CAS  Google Scholar 

  56. Sergeev, N., et al., Microarray analysis of Bacillus cereus group virulence factors. J Microbiol Methods, 2005.

    Google Scholar 

  57. Sergeev, N., et al., Microarray analysis of Bacillus cereus group virulence factors. J Microbiol Methods, 2006. 65(3): pp. 488–502.

    Article  CAS  Google Scholar 

  58. AOAC International, Bacteriological analytical manual (BAM). 8th ed. (revision A). 1998, Gaithersburg, MD: AOAC International.

    Google Scholar 

  59. Sambrook, J. and D.W. Russell, Molecular cloning: a laboratory manual. 3rd ed. 2001, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  60. Chachaty, E. and P. Saulnier, Isolation chromosomal DNA from bacteria, in The nucleic acid protocols: handbook, R. Rapley, Editor. 2000, Totowa, NJ: Humana Press Inc. pp. 29–32.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Volokhov, D.V., Kong, H., Herold, K., Chizhikov, V.E., Rasooly, A. (2011). Oligonucleotide Microarrays for Identification of Microbial Pathogens and Detection of Their Virulence-Associated or Drug-Resistance Determinants. In: Khademhosseini, A., Suh, KY., Zourob, M. (eds) Biological Microarrays. Methods in Molecular Biology, vol 671. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-551-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-551-0_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-95-4

  • Online ISBN: 978-1-59745-551-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics