Skip to main content

Molecular Design of Performance Proteins With Repetitive Sequences

Recombinant Flagelliform Spider Silk as Basis for Biomaterials

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 474))

Summary

Most performance proteins responsible for the mechanical stability of cells and organisms reveal highly repetitive sequences. Mimicking such performance proteins is of high interest for the design of nanostructured biomaterials. In this article, flagelliform silk is exemplary introduced to describe a general principle for designing genes of repetitive performance proteins for recombinant expression in Escherichia coli . In the first step, repeating amino acid sequence motifs are reversely transcripted into DNA cassettes, which can in a second step be seamlessly ligated, yielding a designed gene. Recombinant expression thereof leads to proteins mimicking the natural ones. The recombinant proteins can be assembled into nanostructured materials in a controlled manner, allowing their use in several applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Faux NG, Bottomley SP, Lesk AM, et al. (2005) Functional insights from the distribution and role of homopeptide repeat-containing proteins. Genome Res. 154, 537–551.

    Article  Google Scholar 

  2. Foster JA, Bruenger E, Gray WR, Sandberg LB. (1973) Isolation and amino acid sequences of tropoelastin peptides. J. Biol. Chem. 248, 2876–2879.

    CAS  Google Scholar 

  3. Fietzek PP, Kuhn K. (1975) Information contained in the amino acid sequence of the alpha1(I)-chain of collagen and its consequences upon the formation of the triple helix, of fibrils and crosslinks. Mol. Cell. Biochem. 8, 141–157.

    Article  CAS  Google Scholar 

  4. Xu M, Lewis RV. (1990) Structure of a protein superfiber: spider dragline silk. Proc. Natl. Acad. Sci. U. S. A. 87, 7120–7124.

    Article  CAS  Google Scholar 

  5. Gosline JM, Guerette PA, Ortlepp CS, Savage KN. (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303.

    CAS  Google Scholar 

  6. Vollrath F. (2000) Strength and structure of spiders' silks. J. Biotechnol. 74, 67–83.

    CAS  Google Scholar 

  7. Gosline JM, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K. (2002) Elastic proteins: biological roles and mechanical properties Phil. Trans. R. Soc. Lond. B. 357, 121–132.

    Article  CAS  Google Scholar 

  8. Bini E, Knight DP, Kaplan DL. (2004) Mapping domain structures in silks from insects and spiders related to protein assembly. J. Mol. Biol. 335, 27–40.

    Article  CAS  Google Scholar 

  9. Hu X, Vasanthavada K, Kohler K, et al. (2006) Molecular mechanisms of spider silk. Cell. Mol. Life. Sci. 63, 1986–1999.

    Article  CAS  Google Scholar 

  10. Anderson SO. (1970) Amino acid composition of spider silks. Comp. Biochem. Physiol. 35, 705–711.

    Article  Google Scholar 

  11. Work RW, Young CT. (1987) The amino acid compositions of major and minor ampullate silks of certain orb-web-building spiders (Araneae, Araneidea) J. Arachnol. 15, 65–80.

    Google Scholar 

  12. Lombardi SL, Kaplan DL. (1990) The amino acid composition of major ampullate gland silk (dragline) of Nephila clavipes (Araneae, Tetragnathidae). J. Arachnol. 18, 297–306.

    Google Scholar 

  13. Hayashi CY, Lewis RV. (1998) Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J. Mol. Biol. 275, 773–784.

    Article  CAS  Google Scholar 

  14. Hayashi CY, Shipley NH, Lewis RV. (1999) Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macrom. 24, 271–275.

    Article  CAS  Google Scholar 

  15. Simmons A, Ray E, Jelinski LW. (1994) Solid state13C NMR of N. clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules 27, 5235–5237.

    Article  CAS  Google Scholar 

  16. Hijirida DH, Do KG, Michal C, Wong S, Zax D, Jelinski LW. (1996)13C NMR of Nephila clavipes major ampullate silk gland. Biophys. J. 71, 3442–3447.

    Article  CAS  Google Scholar 

  17. Kümmerlen J, van Beek JD, Vollrath F, Meier BH. (1996) Local structure in spider dragline silk investigated by two-dimensional spin-diffusion NMR. Macromolecules 29, 2820–2928.

    Article  Google Scholar 

  18. Seidel A, Liivak O, Calve S, et al. (2000) Regenerated spider silk: processing, properties, and structure. Macromolecules 33, 775–780.

    Article  CAS  Google Scholar 

  19. van Beek JD, Hess S, Vollrath F, Meier BH. (2002) The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc. Natl. Acad. Sci. U. S. A. 99, 10266–10271.

    Article  Google Scholar 

  20. Lawrence BA, Vierra CA, Moore AMF. (2004) Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus. Biomacromolecules 5, 689–685.

    Article  CAS  Google Scholar 

  21. Yang M, Nakazawa Y, Yamauchi K, Knight D, Asakura T. (2005) Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by13C cross polarization/magic angle spinning NMR. Biomacromolecules 6, 3220–3226.

    Article  CAS  Google Scholar 

  22. Zhou C, Leng B, Yao J, et al. (2006) Synthesis and characterization of multi-block copolymers based on spider dragline silk proteins. Biomacromolecules 7, 2415–2419.

    Article  CAS  Google Scholar 

  23. Simmons A, Michal C, Jelinski L. (1996) Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84–87.

    Article  CAS  Google Scholar 

  24. Jelinski LW, Blye A, Liivak O, et al. (1999) Orientation, structure, wet-spinning, and molecular basis for supercontraction of spider dragline silk. Int. J. Biol. Macromol. 24, 197–201.

    Article  CAS  Google Scholar 

  25. Riekel C, Bränden C, Craig C, Ferrero C, Heidelbach F, Müller M. (1999) Aspects of X-ray diffraction on single spider fibers. Int. J. Biol. Macromol. 24, 179–186.

    Article  CAS  Google Scholar 

  26. Gosline JM, Denny MW, DeMont ME. (1984) Spider silk as rubber. Nature 309, 551–552.

    Article  CAS  Google Scholar 

  27. Termonia Y. (1994) Monte Carlo diffusion model of polymer coagulation. Macromolecules 27, 7378–7381.

    Article  CAS  Google Scholar 

  28. Zhou Y, Wu S, Conticello VP. (2001) Genetically directed synthesis and spectro-scopic analysis of a protein polymer derived from a flagelliform silk sequence. Biomacromolecules 2, 111–125.

    Article  CAS  Google Scholar 

  29. Ohgo K, Kawase T, Ashida J, Asakura T. (2006) Solid-state NMR analysis of a peptide (Gly-Pro-Gly-Gly-Ala)6-Gly derived from a flagelliform silk sequence of Nephila clavipes. Biomacromolecules 7, 1210–1214.

    Article  CAS  Google Scholar 

  30. Becker N, Oroudjev E, Mutz S, et al. (2003) Molecular nanosprings in spider capture-silk threads. Nat. Mater. 2, 278–283.

    Article  CAS  Google Scholar 

  31. Huemmerich D, Helsen CW, Quedzuweit S, Oschman J, Rudolph R, Scheibel T. (2004) Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 43, 13604–13612.

    Article  CAS  Google Scholar 

  32. Scheibel T. (2004) Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb. Cell. Fact. 3, 14–23.

    Article  Google Scholar 

  33. Vendrely C, Scheibel T. (2007) Biotechnological production of spider silk proteins enables new applications. Macromol. Biosci. 7, 401–409.

    Article  CAS  Google Scholar 

  34. Altman GH, Diaz F, Jakuba C, et al. (2003) Silk-based biomaterials. Biomaterials 24, 401–416.

    Article  CAS  Google Scholar 

  35. Huemmerich D, Slotta U, Scheibel T. (2006) Processing and modification of films made from recombinant spider silk proteins. Appl. Phys. A82, 219–222.

    Article  CAS  Google Scholar 

  36. Slotta U, Tammer M, Kremer F, Kölsch P, Scheibel T. (2006) Structural analysis of spider silk films. Supramol. Chem. 18, 465–472.

    Article  CAS  Google Scholar 

  37. Szela S, Avtges P, Valluzzi R, et al. (2000) Reduction-oxidation control of beta-sheet assembly in genetically engineered silk. Biomacromolecules 1, 534–542.

    Article  CAS  Google Scholar 

  38. Winkler S, Wilson D, Kaplan DL. (2000) Controlling β-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry 39, 12739–12746.

    Article  CAS  Google Scholar 

  39. Valluzzi R, Winkler S, Wilson D, Kaplan DL. (2002) Silk: molecular organization and control of assembly. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 165–167.

    Article  CAS  Google Scholar 

  40. Wong Po Foo C, Bini E, Huang J, Lee SY, Kaplan DL. (2006) Solution behaviour of synthetic silk peptides and modified recombinant silk proteins. Appl. Phys. A82, 193–203.

    Article  Google Scholar 

  41. Scheibel T, Parthasarathy R, Sawicki G, Lin X-M, Jaeger H, Lindquist S. (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. U. S. A. 100, 4527–4532.

    Article  CAS  Google Scholar 

  42. Scheibel T. (2005) Protein fibers as performance proteins: new technologies and applications. Curr. Opin. Biotechnol. 16, 427–433.

    Article  CAS  Google Scholar 

  43. Scheller J, Henggeler D, Viviani A, Conrad U. (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res. 13, 51–57.

    Article  CAS  Google Scholar 

  44. Wong Po Foo C, Patwardhan S V, Belton DJ, et al. (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins Proc. Natl. Acad. Sci. U. S. A. 103, 9428–9433.

    Article  Google Scholar 

  45. Huang J, Wong C, George A, Kaplan DL. (2007) The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 28, 2358–2367.

    Article  CAS  Google Scholar 

  46. Cappello J, Crissman J, Dorman M, et al. (1990) Genetic engineering of structural protein polymers. Biotechnol. Prog. 6, 198–202.

    Article  CAS  Google Scholar 

  47. Yang M, Asakura T. (2005) Design, expression, and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins. J. Biochem. 137, 721–729.

    Article  CAS  Google Scholar 

  48. Bini E, Wong Po Foo C, Huang J, Karageorgiou V, Kitchel B, Kaplan DL. (2006) RGD-functionalized bioengineered spider silk dragline silk biomaterial. Biomacromolecules 7, 3139–3145.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Fiberlab and Lasse Reefschläger for critical comments on the manuscript. This work was supported by grants from DFG (SCHE 603/4-2) and ARO (W911NF-06-1-0451).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Vendrely, C., Ackerschott, C., Römer, L., Scheibel, T. (2008). Molecular Design of Performance Proteins With Repetitive Sequences. In: Gazit, E., Nussinov, R. (eds) Nanostructure Design. Methods in Molecular Biology™, vol 474. Humana Press. https://doi.org/10.1007/978-1-59745-480-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-480-3_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-35-0

  • Online ISBN: 978-1-59745-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics