Skip to main content

Epitope Mapping by Differential Chemical Modification of Antigens

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 524))

Summary

Matrix-assisted laser desorption ionization or electrospray ionization mass spectrometry combined with differential chemical modification have proven to be versatile tools for epitope mapping as well as for studying diverse protein–protein and protein–ligand interactions. Characterization of a discontinuous or a conformational epitope on an antigen demands the ability to map the three-dimensional protein surface along with the interface of two interacting proteins. Classical methods of differentially derivatizing amino acid residues have been successfully merged with highly sensitive and highly accurate mass spectrometric techniques to rapidly profile the three-dimensional protein surface and determine the surface accessibility of specific amino acid residues. Here we discuss the use of mass spectrometry to characterize discontinuous or conformational epitopes by studying antigen–antibody interactions. The steps involved in epitope mapping approaches using differential chemical modification and H/D exchange on the antigen are discussed in detail, with particular emphasis on the experimental protocols.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Barlow, D. J., Edwards, M. S., and Thornton, J. M. (1986) Continuous and discontinuous protein antigenic determinants. Nature 322, 747–748.

    Article  PubMed  CAS  Google Scholar 

  2. Bosshard, H. R. (1996) Epitope mapping by differential chemical modification of antigens. Methods Mol. Biol. 66, 85–95.

    PubMed  CAS  Google Scholar 

  3. Hager-Braun, C., and Tomer, K. B. (2005) Determination of protein-derived epitopes by mass spectrometry. Expert Rev. Proteomics 2, 745–756.

    Article  PubMed  CAS  Google Scholar 

  4. Hochleitner, E. O., Gorny, M. K., Zolla-Pazner, S., and Tomer, K. B. (2000) Mass spectro-metric characterization of a discontinuous epitope of the HIV envelope protein HIV-gp120 recognized by the human monoclonal antibody 1331A. J. Immunol. 164, 4156–4161.

    PubMed  CAS  Google Scholar 

  5. Baerga-Ortiz, A., Hughes, C. A., Mandell, J. G., and Komives, E. A. (2002) Epitope mapping of a monoclonal antibody against human thrombin by H/D-exchange mass spectrometry reveals selection of a diverse sequence in a highly conserved protein. Protein Sci. 11, 1300–1308.

    Article  PubMed  CAS  Google Scholar 

  6. Parker, C. E., Papac, D. I., Trojak, S. K., and Tomer, K. B. (1996) Epitope mapping by mass spectrometry: determination of an epitope on HIV-1 IIIB p26 recognized by a monoclonal antibody. J. Immunol. 157, 198–206.

    PubMed  CAS  Google Scholar 

  7. Parker, C. E., and Tomer, K. B. (2002) MALDI/MS-based epitope mapping of antigens bound to immobilized antibodies. Mol. Biotechnol. 20, 49–62.

    Article  PubMed  CAS  Google Scholar 

  8. Peter, J. F., and Tomer, K. B. (2001) A general strategy for epitope mapping by direct MALDI-TOF mass spectrometry using secondary antibodies and cross-linking. Anal. Chem. 73, 4012–4019.

    Article  PubMed  CAS  Google Scholar 

  9. Purcell, A. W., and Gorman, J. J. (2004) Immunoproteomics: mass spectrometry-based methods to study the targets of the immune response. Mol. Cell. Proteomics 3, 193–208.

    Article  PubMed  CAS  Google Scholar 

  10. Burnens, A., Demotz, S., Corradin, G., Binz, H., and Bosshard, H. R. (1987) Epitope mapping by chemical modification of free and antibody-bound protein antigen. Science 235, 780–783.

    Article  PubMed  CAS  Google Scholar 

  11. Fiedler, W., Borchers, C., Macht, M., Deininger, S. O., and Przybylski, M. (1998) Molecular characterization of a conformational epitope of hen egg white lysozyme by differential chemical modification of immune complexes and mass spectrome-tric peptide mapping. Bioconjug. Chem. 9, 236–241.

    Article  PubMed  CAS  Google Scholar 

  12. Jemmerson, R., and Paterson, Y. (1986) Mapping epitopes on a protein antigen by the proteolysis of antigen–antibody complexes. Science 232, 1001–1004.

    Article  PubMed  CAS  Google Scholar 

  13. Glocker, M. O., Borchers, C., Fiedler, W., Suckau, D., and Przybylski, M. (1994) Molecular characterization of surface topology in protein tertiary structures by amino-acylation and mass spectrometric peptide mapping. Bioconjug. Chem. 5, 583–590.

    Article  PubMed  CAS  Google Scholar 

  14. Hochleitner, E. O., Borchers, C., Parker, C., Bienstock, R. J., and Tomer, K. B. (2000) Characterization of a discontinuous epitope of the human immunodeficiency virus (HIV) core protein p24 by epitope excision and differential chemical modification followed by mass spectrometric peptide mapping analysis. Protein Sci. 9, 487–496.

    Article  PubMed  CAS  Google Scholar 

  15. Williams, J. G., Tomer, K. B., Hioe, C. E., Zolla-Pazner, S., and Norris, P. J. (2006) The antigenic determinants on HIV p24 for CD4+ T cell inhibiting antibodies as determined by limited proteolysis, chemical modification, and mass spectrometry. J. Am. Soc. Mass Spectrom. 17, 1560–1569.

    Article  PubMed  CAS  Google Scholar 

  16. Bosshard, H. R. (1979) Mapping of contact areas in protein–nucleic acid and protein–protein complexes by differential chemical modification. Methods Biochem. Anal. 25, 273–301.

    Article  PubMed  CAS  Google Scholar 

  17. Kaplan, H., Stevenson, K. J., and Hartley, B. S. (1971) Competitive labelling, a method for determining the reactivity of individual groups in proteins. The amino groups of porcine elastase. Biochem. J. 124, 289–299.

    PubMed  CAS  Google Scholar 

  18. Roesijadi, G., Vestling, M. M., Murphy, C. M., Klerks, P. L., and Fenselau, C. C. (1991) Structure and time-dependent behavior of acetylated and non-acetylated forms of a molluscan metallothionein. Biochim. Biophys. Acta 1074, 230–236.

    Article  PubMed  CAS  Google Scholar 

  19. Hager-Braun, C., and Tomer, K. B. (2002) Characterization of the tertiary structure of soluble CD4 bound to glycosylated full-length HIVgp120 by chemical odification of arginine residues and mass spectrometric analysis. Biochemistry 41, 1759–1766.

    Article  PubMed  CAS  Google Scholar 

  20. Santrucek, J., Strohalm, M., Kadlcik, V., Hynek, R., and Kodicek, M. (2004) Tyrosine residues modification studied by MALDI-TOF mass spectrometry. Biochem. Biophys. Res. Commun. 323, 1151–1156.

    Article  PubMed  CAS  Google Scholar 

  21. Wood, T. D., Guan, Z., Borders, C. L., Jr., Chen, L. H., Kenyon, G. L., and McLafferty, F. W. (1998) Creatine kinase: essential arginine residues at the nucleotide binding site identified by chemical modification and high-resolution tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 95, 3362–3365.

    Article  PubMed  CAS  Google Scholar 

  22. Alcalde, M., Plou, F. J., Andersen, C., Martin, M. T., Pedersen, S., and Ballesteros, A. (1999) Chemical modification of lysine side chains of cyclodextrin glycosyltransferase from Thermoanaerobacter causes a shift from cyclodextrin glycosyltransferase to alpha-amylase specificity. FEBS Lett. 445, 333–337.

    Article  PubMed  CAS  Google Scholar 

  23. Strohalm, M., Santrucek, J., Hynek, R., and Kodicek, M. (2004) Analysis of tryptophan surface accessibility in proteins by MALDI-TOF mass spectrometry. Biochem. Biophys. Res. Commun. 323, 1134–1138.

    Article  PubMed  CAS  Google Scholar 

  24. Steiner, R. F., Albaugh, S., Fenselau, C., Murphy, C., and Vestling, M. (1991) A mass spectrometry method for mapping the interface topography of interacting proteins, illustrated by the melittin-calmodulin system. Anal. Biochem. 196, 120–125.

    Article  PubMed  CAS  Google Scholar 

  25. Suckau, D., Mak, M., and Przybylski, M. (1992) Protein surface topology-probing by selective chemical modification and mass spectrometric peptide mapping. Proc. Natl. Acad. Sci. USA 89, 5630–5634.

    Article  PubMed  CAS  Google Scholar 

  26. Glocker, M. O., Nock, S., Sprinzl, M., and Przybylski, M. (1998) Characterization of surface topology and binding area in complexes of the elongation factor proteins EF-Ts and EF-TuGDP from Thermus thermophilus: a study by protein chemical modification and mass spectrometry. Chem. Eur. J. 4, 707–715.

    Article  CAS  Google Scholar 

  27. Yan, X., Watson, J., Ho, P. S., and Deinzer, M. L. (2004) Mass spectrometric approaches using electrospray ionization charge states and hydrogen–deuterium exchange for determining protein structures and their conformational changes. Mol. Cell. Proteomics 3, 10–23.

    PubMed  CAS  Google Scholar 

  28. Milne, J. S., Mayne, L., Roder, H., Wand, A. J., and Englander, S. W. (1998) Determinants of protein hydrogen exchange studied in equine cytochrome c. Protein Sci. 7, 739–745.

    Article  PubMed  CAS  Google Scholar 

  29. Busenlehner, L. S., and Armstrong, R. N. (2005) Insights into enzyme structure and dynamics elucidated by amide H/D exchange mass spectrometry. Arch. Biochem. Biophys. 433, 34–46.

    Article  PubMed  CAS  Google Scholar 

  30. Hoofnagle, A. N., Resing, K. A., and Ahn, N. G. (2003) Protein analysis by hydrogen exchange mass spectrometry. Annu. Rev. Biophys. Biomol. Struct. 32, 1–25.

    Article  PubMed  CAS  Google Scholar 

  31. Wu, Y., Kaveti, S., and Engen, J. R. (2006) Extensive deuterium back-exchange in certain immobilized pepsin columns used for H/D exchange mass spectrometry. Anal. Chem. 78, 1719–1723.

    Article  PubMed  CAS  Google Scholar 

  32. Mandell, J. G., Falick, A. M., and Komives, E. A. (1998) Measurement of amide hydrogen exchange by MALDI-TOF mass spectro-metry. Anal. Chem. 70, 3987–3995.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, Z. Q., and Smith, D. L. (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci. 2, 522–531.

    Article  PubMed  CAS  Google Scholar 

  34. Ehring, H. (1999) Hydrogen exchange/electrospray ionization mass spectrometry studies of structural features of proteins and protein/protein interactions. Anal. Biochem. 267, 252–259.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, L. T., Pan, H., and Smith, D. L. (2002) Hydrogen exchange-mass spectrometry: optimization of digestion conditions. Mol. Cell. Proteomics 1, 132–138.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Leesa J. Deterding and Dr. Jason G. Williams for helpful discussions. This work was supported by Intramural Research program, National Institute of Environmental Health Sciences, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth B. Tomer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dhungana, S., Fessler, M.B., Tomer, K.B. (2009). Epitope Mapping by Differential Chemical Modification of Antigens. In: Schutkowski, M., Reineke, U. (eds) Epitope Mapping Protocols. Methods in Molecular Biology™, vol 524. Humana Press. https://doi.org/10.1007/978-1-59745-450-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-450-6_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-17-6

  • Online ISBN: 978-1-59745-450-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics