Skip to main content

Epigenetic Targets in Cancer Epidemiology

  • Protocol
Cancer Epidemiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 471))

Summary

Recently, it has been shown that epigenetic changes are involved in early stages of tumorigenesis, and they may trigger the genetic events leading to tumor development. In cancer epidemiology, there are several epigenetic alterations involved, such as DNA hypermethylation, DNA hypomethylation, and chromatin modifications with critical roles in the initiation and progression of human neoplasms. This chapter discusses the hypermethylation profiles of several tumor types, including bladder, brain, breast, colorectal, ovarian, prostate, and other cancers as well as DNA hypomethylation phenomena together with the chromatin modifications and their role in the complex mechanism of epigenetic silencing. Moreover, the involvement of environmental exposures in cancer susceptibility is addressed. In conclusion, these epigenetic changes are important characteristics of human neoplasia, and a better understanding of these modifications and the link between these changes for each tumor type will be important in early diagnosis of cancer and cancer prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baylin, S.B. and Ohm, J.E. (2006) Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer 6, 107–116.

    Article  CAS  PubMed  Google Scholar 

  2. Jacinto, F.V. and Esteller, M. (2007) Mutator pathways unleashed by epigenetic silencing in human cancer. Mutagenesis 22, 247–253

    Article  CAS  PubMed  Google Scholar 

  3. Jones, P.A. and Baylin, S.B. (2007) The epigenomics of cancer. Cell 128, 683–692

    Article  CAS  PubMed  Google Scholar 

  4. Esteller, M. (2005) Aberrant DNA methylation as a cancer-inducing mechanism. Annu. Rev. Pharmacol. Toxicol. 45, 629–656.

    Article  CAS  PubMed  Google Scholar 

  5. Greger, V. et al. (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum. Genet. 83, 155–158.

    Article  CAS  PubMed  Google Scholar 

  6. Feinberg, A.P. (2007) Phenotypic plastiCity and the epigenetics of human disease. Nature 447, 433–440.

    Article  CAS  PubMed  Google Scholar 

  7. Verma, M. and Manne, U. (2006) Genetic and epigenetic biomarkers in cancer diagnosis and identifying high risk populations. Crit Rev. Oncol. Hematol. 60, 9–18.

    Article  PubMed  Google Scholar 

  8. Kawamoto, K. et al. (2006) p16INK4a and p14ARF methylation as a potential biomarker for human bladder cancer. Biochem. Biophys. Res. Commun. 339, 790–796.

    Article  CAS  PubMed  Google Scholar 

  9. Urakami, S. et al. (2006) Wnt antagonist family genes as biomarkers for diagnosis, staging, and prognosis of renal cell carcinoma using tumor and serum DNA. Clin. Cancer Res. 12, 6989–6997.

    Article  CAS  PubMed  Google Scholar 

  10. Friedrich, M.G. et al. (2007) DNA methylation on urinalysis and as a prognostic marker in urothelial cancer of the bladder. Urologe A 46, 761–768.

    Article  CAS  PubMed  Google Scholar 

  11. Yates, D.R. et al. (2007) Promoter hypermethylation identifies progression risk in bladder cancer. Clin. Cancer Res. 13, 2046–2053.

    Article  CAS  PubMed  Google Scholar 

  12. Yu, J. et al. (2004) Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer 4, 65.

    Article  PubMed  Google Scholar 

  13. Watanabe, T. et al. (2007) Aberrant hypermethylation of p14ARF and O6-methylguanine-DNA methyltransferase genes in astrocytoma progression. Brain Pathol. 17, 5–10.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, Z. et al. (2006) Promoter hypermethylation-mediated down-regulation of LATS1 and LATS2 in human astrocytoma. Neurosci. Res 56, 450–458.

    Article  CAS  PubMed  Google Scholar 

  15. Lindsey, J.C. et al. (2005) Epigenetic events in medulloblastoma development. Neurosurg. Focus 19, E10.

    Article  PubMed  Google Scholar 

  16. Martinez-Glez, V. et al. (2007) DAPK1 promoter hypermethylaiton in brain metastases and peripheral blood. Neoplasma 54, 123–126.

    CAS  PubMed  Google Scholar 

  17. Kim, T. Y. et al. (2006) Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylation-mediated silencing in malignant glioma. Cancer Res. 66, 7490–7501.

    Article  CAS  PubMed  Google Scholar 

  18. Gomori, E. et al. (2007) Epigenetic inactivation of the hMLH1 gene in progression of gliomas. Diagn. Mol. Pathol. 16, 104–107.

    Article  CAS  PubMed  Google Scholar 

  19. Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell 100, 57–70.

    Article  CAS  PubMed  Google Scholar 

  20. Widschwendter, M. and Jones, P.A. (2002) DNA methylation and breast carcinogenesis. Oncogene 21, 5462–5482.

    Article  CAS  PubMed  Google Scholar 

  21. Muller, H.M. et al. (2004) Prognostic DNA methylation marker in serum of cancer patients. Ann. N Y Acad. Sci. 1022, 44–49.

    Article  CAS  PubMed  Google Scholar 

  22. Taback, B. et al. (2006) Epigenetic analysis of body fluids and tumor tissues: application of a comprehensive molecular assessment for early-stage breast cancer patients. Ann. N Y Acad. Sci. 1075, 211–221.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, J.J. et al. (2007) [Detection and significance of APC gene promoter hypermethylation in serum of breast cancer patients]. Ai. Zheng 26, 44–47.

    PubMed  Google Scholar 

  24. Jing, F. et al. (2007) Hypermethylation of tumor suppressor genes BRCA1, p16 and 14-3-3sigma in serum of sporadic breast cancer patients. Onkologie 30, 14–19.

    Article  CAS  PubMed  Google Scholar 

  25. Sharma, G. et al. (2007) Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sci. 80, 1873–1881.

    Article  CAS  PubMed  Google Scholar 

  26. Holst, C.R. et al. (2003) Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res. 63, 1596–1601.

    CAS  PubMed  Google Scholar 

  27. Turan, T. et al. (2006) Methylation of the human papillomavirus-18 L1 gene: a biomarker of neoplastic progression? Virology 349, 175–183.

    Article  CAS  PubMed  Google Scholar 

  28. Yang, H.J. et al. (2006) Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data. BMC Cancer 6, 212.

    Article  PubMed  Google Scholar 

  29. Widschwendter, A. et al. (2004) DNA methylation in serum and tumors of cervical cancer patients. Clin. Cancer Res. 10, 565–571.

    Article  CAS  PubMed  Google Scholar 

  30. Kitkumthorn, N. et al. (2006) Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancer. BMC Cancer 6, 55.

    Article  PubMed  Google Scholar 

  31. Jo, H. et al. (2007) Hypermethylation of the COX-2 gene is a potential prognostic marker for cervical cancer. J. Obstet. Gynaecol. Res. 33, 236–241.

    Article  CAS  PubMed  Google Scholar 

  32. Wallner, M. et al. (2006) Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clin. Cancer Res. 12, 7347–7352.

    Article  CAS  PubMed  Google Scholar 

  33. Niv, Y. (2007) Microsatellite instability and MLH1 promoter hypermethylation in colorectal cancer. World J. Gastroenterol. 13, 1767–1769.

    CAS  PubMed  Google Scholar 

  34. Huang, Z. et al. (2007) Hypermethylation of SFRP2 as a potential marker for stool-based detection of colorectal cancer and precancerous lesions. Dig. Dis. Sci. 52, 2287–2291.

    Article  PubMed  Google Scholar 

  35. Mittag, F. et al. (2006) DAPK promotor methylation is an early event in colorectal carcinogenesis. Cancer Lett. 240, 69–75.

    Article  CAS  PubMed  Google Scholar 

  36. Grote, H.J. et al. (2006) Methylation of RAS association domain family protein 1A as a biomarker of lung cancer. Cancer 108, 129–134.

    Article  CAS  PubMed  Google Scholar 

  37. Machida, E.O. et al. (2006) Hypermethylation of ASC/TMS1 is a sputum marker for late-stage lung cancer. Cancer Res. 66, 6210–6218.

    Article  CAS  PubMed  Google Scholar 

  38. Ulivi, P. et al. (2006) p16INK4A and CDH13 hypermethylation in tumor and serum of non-small cell lung cancer patients. J. Cell Physiol 206, 611–615.

    Article  CAS  PubMed  Google Scholar 

  39. Belinsky, S.A. et al. (2006) Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res. 66, 3338–3344.

    Article  CAS  PubMed  Google Scholar 

  40. Li, L.C. (2007) Epigenetics of prostate cancer. Front Biosci. 12, 3377–3397.

    Article  CAS  PubMed  Google Scholar 

  41. Vanaja, D.K. et al. (2006) PDLIM4 repression by hypermethylation as a potential biomarker for prostate cancer. Clin. Cancer Res. 12, 1128–1136.

    Article  CAS  PubMed  Google Scholar 

  42. Jeronimo, C. et al. (2004) Quantitative RARbeta2 hypermethylation: a promising prostate cancer marker. Clin. Cancer Res. 10, 4010–4014.

    Article  CAS  PubMed  Google Scholar 

  43. Rosenbaum, E. et al. (2005) Promoter hypermethylation as an independent prognostic factor for relapse in patients with prostate cancer following radical prostatectomy. Clin. Cancer Res. 11, 8321–8325.

    Article  CAS  PubMed  Google Scholar 

  44. Henrique, R. and Jeronimo, C. (2004) Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. Eur. Urol. 46, 660–669.

    Article  CAS  PubMed  Google Scholar 

  45. Bastian, P.J. et al. (2005) Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin. Cancer Res. 11, 4037–4043.

    Article  CAS  PubMed  Google Scholar 

  46. Reibenwein, J. et al. (2007) Promoter hypermethylation of GSTP1, AR, and 14-3-3sigma in serum of prostate cancer patients and its clinical relevance. Prostate 67,427–432.

    Article  Google Scholar 

  47. Papadopoulou, E. et al. (2006) Cell-free DNA and RNA in plasma as a new molecular marker for prostate and breast cancer. Ann. N. Y. Acad. Sci. 1075, 235–243.

    Article  CAS  PubMed  Google Scholar 

  48. Henrique, R. et al. (2005) Frequent 14-3-3 sigma promoter methylation in benign and malignant prostate lesions. DNA Cell Biol. 24, 264–269.

    Article  CAS  PubMed  Google Scholar 

  49. Aitchison, A. et al. (2007) RASSF1A promoter methylation is frequently detected in both pre-malignant and non-malignant microdissected prostatic epithelial tissues. Prostate 67, 638–644.

    Article  CAS  PubMed  Google Scholar 

  50. Dhillon, V.S. et al. (2004) Promoter hypermethylation of MGMT, CDH1, RAR-beta and SYK tumour suppressor genes in granulosa cell tumours (GCTs) of ovarian origin. Br. J. Cancer 90, 874–881.

    Article  CAS  PubMed  Google Scholar 

  51. Hong, F.Z. et al. (2005) Hypermethylation of fragile histidine triad gene and 3p14 allelic deletion in ovarian carcinomas. Zhonghua Bing. Li Xue. Za Zhi. 34, 257–261.

    CAS  PubMed  Google Scholar 

  52. Chan, M.W. et al. (2005) Hypermethylation of 18S and 28S ribosomal DNAs predicts progression-free survival in patients with ovarian cancer. Clin. Cancer Res. 11, 7376–7383.

    Article  CAS  PubMed  Google Scholar 

  53. Wiley, A. et al. (2006) Methylation of the insulin-like growth factor binding protein-3 gene and prognosis of epithelial ovarian cancer. Int. J. Gynecol. Cancer 16, 210–218.

    Article  CAS  PubMed  Google Scholar 

  54. Yang, H.J. et al. (2006) Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data. BMC Cancer 6, 212.

    Article  PubMed  Google Scholar 

  55. van'd., V. et al. (2003) Expression profiling reveals that methylation of TIMP3 is involved in uveal melanoma development. Int. J. Cancer 106, 472–479.

    Article  Google Scholar 

  56. Mori, T. et al. (2006) Estrogen receptoralpha methylation predicts melanoma progression. Cancer Res. 66, 6692–6698.

    Article  CAS  PubMed  Google Scholar 

  57. Maat, W. et al. (2007) Epigenetic inactivation of RASSF1a in uveal melanoma. Invest. Ophthalmol. Vis. Sci. 48, 486–490.

    Article  PubMed  Google Scholar 

  58. House, M. G. et al. (2003) Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann. Surg. 238, 423–431.

    PubMed  Google Scholar 

  59. Lee, S. et al. (2003) Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am. J. Pathol. 163, 1371–1378.

    CAS  PubMed  Google Scholar 

  60. Sugawara, W. et al. (2007) Promoter hypermethylation of the RASSF1A gene predicts the poor outcome of patients with hepatoblastoma. Pediatr. Blood Cancer 49, 240–249.

    Article  PubMed  Google Scholar 

  61. Wu, D.L. et al. (2006) Methylation in esophageal carcinogenesis. World J. Gastroenterol. 12, 6933–6940.

    CAS  PubMed  Google Scholar 

  62. Esteller, M. (2003) Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin. Immunol. 109, 80–88.

    Article  CAS  PubMed  Google Scholar 

  63. Wilson, A.S. et al. (2007) DNA hypomethylation and human diseases. Biochim. Biophys. Acta 1775, 138–162.

    CAS  PubMed  Google Scholar 

  64. Ehrlich, M. (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21, 5400–5413.

    Article  CAS  PubMed  Google Scholar 

  65. Brock, M.V. et al. (2007) Cancer as a manifestation of aberrant chromatin structure. Cancer J. 13, 3–8.

    CAS  PubMed  Google Scholar 

  66. Nan, X. et al. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389.

    Article  CAS  PubMed  Google Scholar 

  67. Kondo, Y. et al. (2007) Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas. Hepatol. Res.

    Google Scholar 

  68. Vincent, A. et al. (2007) Epigenetic regulation (DNA methylation, histone modifications) of the 11p15 mucin genes (MUC2, MUC5AC, MUC5B, MUC6) in epithelial cancer cells. Oncogene.

    Google Scholar 

  69. Zhang, Y. et al. (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924–1935.

    Article  CAS  PubMed  Google Scholar 

  70. Harikrishnan, K.N. et al. (2005) Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat. Genet. 37, 254–264.

    Article  CAS  PubMed  Google Scholar 

  71. Jirtle, R.L. and Skinner, M.K. (2007) Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8, 253–262.

    Article  CAS  PubMed  Google Scholar 

  72. Falls, J.G. et al. (1999) Genomic imprinting: implications for human disease. Am. J. Pathol. 154, 635–647.

    CAS  PubMed  Google Scholar 

  73. Weidman, J.R. et al. (2007) Cancer susceptibility: epigenetic manifestation of environmental exposures. Cancer J. 13, 9–16.

    Article  CAS  PubMed  Google Scholar 

  74. Rakyan, V.K. et al. (2002) Metastable epialleles in mammals. Trends Genet. 18, 348–351.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. Marian Catalin for reviewing this manuscript. This work was supported by the DOD grant Breast Center of Excellence-DAMD17-03-1-0446 (to Peter Shields).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dumitrescu, R.G. (2009). Epigenetic Targets in Cancer Epidemiology. In: Verma, M. (eds) Cancer Epidemiology. Methods in Molecular Biology, vol 471. Humana Press. https://doi.org/10.1007/978-1-59745-416-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-416-2_23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-987-1

  • Online ISBN: 978-1-59745-416-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics