Skip to main content

The Canonical Wnt/β-Catenin Signalling Pathway

  • Protocol
Wnt Signaling

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 468))

Abstract

Embryonic development of multicellular organisms is an incredibly complex process that relies heavily on evolutionarily conserved signalling pathways to provide crucial cell cell communication. Typically, secreted signalling proteins such as Wnts, BMPs, and Hedgehogs released by one cell population will trigger concentration-dependent responses in other cells located some distance away. In adults, the same signalling pathways orchestrate tissue renewal in organs such as the intestine and skin, and direct tissue regeneration in many organs following injury. Strict regulation of these signalling pathways is critical, with insufficient or excess activity having catastrophic consequences including severe developmental defects or, later in life, cancer. This chapter deals with the β-catenin-dependent branch of Wnt signalling (also referred to the canonical pathway).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nusse, R. and Varmus, H. E. (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109.

    Article  CAS  PubMed  Google Scholar 

  2. Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., and Nusse R. (1987) The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50>, 649–657.

    Article  CAS  PubMed  Google Scholar 

  3. McMahon, A. P. and Moon, R. T. (1989) Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58, 1075– 1084.

    Article  CAS  PubMed  Google Scholar 

  4. Clevers, H. (2006) Wnt/beta-catenin signaling in development and disease. Cell 127, 469–480.

    Article  CAS  PubMed  Google Scholar 

  5. Barker, N. and Clevers, H. (2006) Mining the Wnt pathway for cancer therapeutics. Nat. Rev. Drug Discov. 5, 997–1014.

    Article  CAS  PubMed  Google Scholar 

  6. Coudreuse, D. and Korswagen, H. C. (2007) The making of Wnt: new insights into Wnt maturation, sorting and secretion. Development 134, 3–12.

    Article  CAS  PubMed  Google Scholar 

  7. Miller J. R. (2002) The Wnts. Genome Biol. 3, REVIEWS3001.

    Google Scholar 

  8. Willert, K., Brown, J. D., Danenberg, E., Duncan, A.W., Weissman, I. L., Reya, T., et al. (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452.

    Article  CAS  PubMed  Google Scholar 

  9. Mikels, A. J. and Nusse, R. (2006) Wnts as ligands: processing, secretion and reception. Oncogene 25, 7461–7468.

    Article  CAS  PubMed  Google Scholar 

  10. Zhai, L., Chatur vedi, D., and Cumberledge, S. (2004) Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J. Biol. Chem. 279, 33220–33227.

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka, K., Kitagawa, Y., and Kadowaki, T. (2002) Drosophila segment polarity gene product porcupine stimulates the post-translational N-glycosylation of wingless in the endoplasmic reticulum. J. Biol. Chem. 277, 12816–12823.

    Article  CAS  PubMed  Google Scholar 

  12. Hofmann, K. (2000) A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem. Sci. 25, 111–112.

    Article  CAS  PubMed  Google Scholar 

  13. Banziger, C., Soldini, D., Schutt, C., Zipperlen, P., Hausmann, G., and Basler, K. (2006) Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509–522.

    Article  CAS  PubMed  Google Scholar 

  14. Bartscherer, K., Pelte, N., Ingelfinger, D., and Boutros, M. (2006) Secretion of Wnt ligands requires Evi, a conserved trans-membrane protein. Cell 125, 523–533.

    Article  CAS  PubMed  Google Scholar 

  15. Coudreuse, D. Y., Roel, G., Betist, M. C., Destree, O., and Korswagen H. C. (2006) Wnt gradient formation requires retromer function in Wnt-producing cells. Science 312, 921–924.

    Article  CAS  PubMed  Google Scholar 

  16. Logan, C. Y. and Nusse, R. (2004) The Wnt signaling pathway in development and disease. Annu. Rev. Cell. Dev. Biol. 20, 781–810.

    Article  CAS  PubMed  Google Scholar 

  17. Panakova, D., Sprong, H., Marois, E., Thiele, C., and Eaton S. (2005) Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435, 58–65.

    Article  CAS  PubMed  Google Scholar 

  18. Lin, X. (2004) Functions of heparan sulfate proteoglycans in cell signaling during devel opment. Development 131, 6009–6021.

    Article  CAS  PubMed  Google Scholar 

  19. Hsiung, F., Ramirez-Weber, F. A., Iwaki, D. D., and Kornberg, T. B. (2005) Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic. Nature 437, 560–563.

    Article  CAS  PubMed  Google Scholar 

  20. Katoh, M. (2005) WNT/PCP signaling pathway and human cancer (review). Oncol. Rep. 14, 1583–1588.

    CAS  PubMed  Google Scholar 

  21. Kohn, A. D. and Moon, R. T. (2005) Wnt and calcium signaling: beta-catenin-independent pathways. Cell. Calcium 38, 439–446.

    Article  CAS  PubMed  Google Scholar 

  22. Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., et al. (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873–877.

    Article  CAS  PubMed  Google Scholar 

  23. Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R. (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J. 16, 3797–3804.

    Article  CAS  PubMed  Google Scholar 

  24. Cavallo, R. A., Cox, R. T., Moline, M. M., Roose, J., Polevoy, G. A., Clevers, H., et al. (1998) Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604–608.

    Article  CAS  PubMed  Google Scholar 

  25. Roose, J., Molenaar, M., Peterson, J., Hurenkamp, J., Brantjes, H., Moerer, P., et al. (1998) The Xenopus Wnt effector XTcf-3 interacts with Groucho-related tran-scriptional repressors. Nature 395, 608–612.

    Article  CAS  PubMed  Google Scholar 

  26. Wallingford, J.B. and Habas, R. (2005) The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132, 4421–4436.

    Article  CAS  PubMed  Google Scholar 

  27. Davidson, G., Wu, W., Shen, J., Bilic, J., Fenger, U., Stannek, P., et al. (2005) Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438, 867–872.

    Article  CAS  PubMed  Google Scholar 

  28. Bilic, J., Huang, Y. L., Davidson, G., Zim-mermann, T., Cruciat, C.M., Bienz, M., et al. (2007) Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622.

    Article  CAS  PubMed  Google Scholar 

  29. Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K.W., et al. (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/-colon carcinoma. Science 275, 1784–1787.

    Article  CAS  PubMed  Google Scholar 

  30. van de Wetering, M. and Clevers, H. (1992) Sequence-specific interaction of the HMG box proteins TCF-1 and SRY occurs within the minor groove of a Watson—Crick double helix. Embo J. 11, 3039–3044.

    PubMed  Google Scholar 

  31. Stadeli, R., Hoffmans, R., and Basler, K. (2006) Transcription under the control of nuclear Arm/beta-catenin. Curr. Biol. 16, R378–385.

    Article  PubMed  Google Scholar 

  32. Behrens, J., von Kries, J. P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., et al. (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382, 638–642.

    Article  CAS  PubMed  Google Scholar 

  33. Molenaar, M., van de Wetering, M., Oost-erwegel, M., Peterson-Maduro, J., Godsave, S., Korinek, V., et al. (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell. 86, 391–399.

    Article  CAS  PubMed  Google Scholar 

  34. van de Wetering, M., Cavallo, R., Dooijes, D., van Beest, M., van Es, J., Loureiro, J., et al. (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799.

    Article  PubMed  Google Scholar 

  35. Daniels, D. L. and Weis, W. I. (2005) Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol. 12, 364–371.

    Article  CAS  PubMed  Google Scholar 

  36. Townsley, F. M., Thompson, B., and Bienz, M.(2004) Pygopus residues required for its binding to Legless are critical for transcription and development. J. Biol. Chem. 279, 5177–5183.

    Article  CAS  PubMed  Google Scholar 

  37. Hoffmans, R., Stadeli, R., and Basler, K. (2005) Pygopus and legless provide essential transcriptional coactivator functions to armadillo/beta-catenin. Curr. Biol. 15, 1207–1211.

    Article  CAS  PubMed  Google Scholar 

  38. Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J., et al. (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 19, 379–383.

    Article  CAS  PubMed  Google Scholar 

  39. Reya, T. and Clevers, H. (2005) Wnt signalling in stem cells and cancer. Nature 434, 843–850.

    Article  CAS  PubMed  Google Scholar 

  40. van Es, J. H., Jay, P., Gregorieff, A., van Gijn, M. E., Jonkheer, S., Hatzis, P., et al.(2005) Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat. Cell Biol. 7, 381–386.

    Article  CAS  PubMed  Google Scholar 

  41. van de Wetering, M., Sancho, E., Verweij, C., de Lau, W., Oving, I., Hurlstone, A., et al. (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250.

    Article  PubMed  Google Scholar 

  42. Van der Flier, L. G., Sabates-Bellver, J., Oving, I., Haegebar th, A., De Palo, M., Anti, M., et al. (2007) The intestinal Wnt/TCF signature. Gastroenterology 132, 628–632.

    Article  CAS  PubMed  Google Scholar 

  43. Sansom, O. J., Reed, K. R., Hayes, A. J., Ireland, H., Brinkmann, H., Newton, I. P., et al. (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 18, 1385–1390.

    Article  CAS  PubMed  Google Scholar 

  44. Batlle, E., Henderson, J. T., Beghtel, H., van den Born, M. M., Sancho, E., Huls, G., et al. (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ ephrinB. Cell 111, 251–263.

    Article  CAS  PubMed  Google Scholar 

  45. Morin, P. J., Sparks, A. B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B., et al. (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275, 1787–1790.

    Article  CAS  PubMed  Google Scholar 

  46. Polakis, P. (2000) Wnt signaling and cancer. Genes Dev. 4, 1837–1851.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barker, N. (2008). The Canonical Wnt/β-Catenin Signalling Pathway. In: Vincan, E. (eds) Wnt Signaling. Methods in Molecular Biology™, vol 468. Humana Press. https://doi.org/10.1007/978-1-59745-249-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-249-6_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-912-3

  • Online ISBN: 978-1-59745-249-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics