Skip to main content

Stem Cell Sources for Regenerative Medicine

  • Protocol
Stem Cells in Regenerative Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 482))

Abstract

Tissue-resident stem cells or primitive progenitors play an integral role in homeostasis of most organ systems. Recent developments in methodologies to isolate and culture embryonic and somatic stem cells have many new applications poised for clinical and preclinical trials, which will enable the potential of regenerative medicine to be realized. Here, we overview the current progress in therapeutic applications of various stem cells and discuss technical and social hurdles that must be overcome for their potential to be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Price, J., Faucheux, C., and Allen, S. (2005) Deer antlers as a model of Mammalian regeneration. Currs Top Dev Biol 67, 1–48

    Article  CAS  Google Scholar 

  2. Klussmann, S., and Martin-Villalba, A. (2005) Molecular targets in spinal cord injury. J Mol Med 83, 657–671

    Article  CAS  PubMed  Google Scholar 

  3. Sun, Y., and Weber, K. T. (2000) Infarct scar: a dynamic tissue. Cardiovasc Res 46, 250–256

    Article  CAS  PubMed  Google Scholar 

  4. Brockes, J. P., and Kumar, A. (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science NY 310, 1919–1923

    CAS  Google Scholar 

  5. Odelberg, S. J. (2004) Unraveling the molecular basis for regenerative cellular plasticity. PLoS Biol 2, E232

    Article  PubMed  CAS  Google Scholar 

  6. Sanchez Alvarado, A., and Kang, H. (2005) Multicellularity, stem cells, and the neoblasts of the planarian Schmidtea mediterranea. Exp Cell Res 306, 299–308

    Article  CAS  PubMed  Google Scholar 

  7. Poss, K. D., Keating, M. T., and Nechiporuk, A. (2003) Tales of regeneration in zebrafish. Dev Dyn 226, 202–210

    Article  PubMed  Google Scholar 

  8. Morrison, J. I., Loof, S., He, P., and Simon, A. (2006) Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol 172, 433–440

    Article  CAS  PubMed  Google Scholar 

  9. McGann, C. J., Odelberg, S. J., and Keating, M. T. (2001) Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc Natl Acad Sci USA 98, 13699–13704

    Google Scholar 

  10. Odelberg, S. J., Kollhoff, A., and Keating, M. T. (2000) Dedifferentiation of mammalian myotubes induced by msx1. Cell 103, 1099–1109

    Article  CAS  PubMed  Google Scholar 

  11. Odelberg, S. J. (2005) Cellular plasticity in vertebrate regeneration. Anat Rec B New Anat 287, 25–35

    PubMed  Google Scholar 

  12. Lien, C. L., Schebesta, M., Makino, S., Weber, G. J., and Keating, M. T. (2006) Gene Expression Analysis of Zebrafish Heart Regeneration. PLoS Biol 4, E260

    Google Scholar 

  13. Lee, Y., Grill, S., Sanchez, A., Murphy-Ryan, M., and Poss, K. D. (2005) Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 132, 5173–5183

    Article  CAS  PubMed  Google Scholar 

  14. Beck, C. W., Christen, B., and Slack, J. M. (2003) Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev Cell 5, 429–439

    Article  CAS  PubMed  Google Scholar 

  15. Vinarsky, V., Atkinson, D. L., Stevenson, T. J., Keating, M. T., and Odelberg, S. J. (2005) Normal newt limb regeneration requires matrix metalloproteinase function. Dev Biol 279, 86–98

    Article  CAS  PubMed  Google Scholar 

  16. Leferovich, J. M., and Heber-Katz, E. (2002) The scarless heart. Semin Cell Dev Biol 13, 327–333

    Article  PubMed  Google Scholar 

  17. Harty, M., Neff, A. W., King, M. W., and Mescher, A. L. (2003) Regeneration or scarring: an immunologic perspective. Dev Dyn 226, 268–279

    Article  PubMed  Google Scholar 

  18. Li, X., Mohan, S., Gu, W., and Baylink, D. J. (2001) Analysis of gene expression in the wound repair/regeneration process. Mamm Genome 12, 52–59

    Article  CAS  PubMed  Google Scholar 

  19. Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256

    Article  CAS  PubMed  Google Scholar 

  20. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J. C. (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90, 8424–8428

    Google Scholar 

  21. Fraidenraich, D., Stillwell, E., Romero, E., Wilkes, D., Manova, K., Basson, C. T., and Benezra, R. (2004) Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science NY 306, 247–252

    CAS  Google Scholar 

  22. Beddington, R. S., and Robertson, E. J. (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105, 733–737

    CAS  PubMed  Google Scholar 

  23. Nichols, J., Evans, E. P., and Smith, A. G. (1990) Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development 110, 1341–1348

    CAS  PubMed  Google Scholar 

  24. Takeda, K., Noguchi, K., Shi, W., Tanaka, T., Matsumoto, M., Yoshida, N., Kishimoto, T., and Akira, S. (1997) Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 94, 3801–3804

    Google Scholar 

  25. Ying, Q. L., Nichols, J., Chambers, I., and Smith, A. (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292

    Article  CAS  PubMed  Google Scholar 

  26. Xu, R. H., Peck, R. M., Li, D. S., Feng, X., Ludwig, T., and Thomson, J. A. (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2, 185–190

    Article  CAS  PubMed  Google Scholar 

  27. Niwa, H., Miyazaki, J., and Smith, A. G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24, 372–376

    Article  CAS  PubMed  Google Scholar 

  28. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642

    Article  CAS  PubMed  Google Scholar 

  29. Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655

    Article  CAS  PubMed  Google Scholar 

  30. Avilion, A. A., Nicolis, S. K., Pevny, L. H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17, 126–140

    Article  CAS  PubMed  Google Scholar 

  31. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., and Young, R. A. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956

    Article  CAS  PubMed  Google Scholar 

  32. Boiani, M., and Scholer, H. R. (2005) Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6, 872–884

    Article  CAS  PubMed  Google Scholar 

  33. Okumura-Nakanishi, S., Saito, M., Niwa, H., and Ishikawa, F. (2005) Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J Biol Chem 280, 5307–5317

    Article  CAS  PubMed  Google Scholar 

  34. Orkin, S. H. (2005) Chipping away at the embryonic stem cell network. Cell 122, 828–830

    Article  CAS  PubMed  Google Scholar 

  35. Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., Huber, I., Satin, J., Itskovitz-Eldor, J., and Gepstein, L. (2004) Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 22, 1282–1289

    Article  CAS  PubMed  Google Scholar 

  36. He, J. Q., Ma, Y., Lee, Y., Thomson, J. A., and Kamp, T. J. (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 93, 32–39

    Article  CAS  PubMed  Google Scholar 

  37. Sinha, S., Wamhoff, B. R., Hoofnagle, M. H., Thomas, J., Neppl, R. L., Deering, T., Helmke, B. P., Bowles, D. K., Somlyo, A. V., and Owens, G. K. (2006) Assessment of contractility of purified smooth muscle cells derived from embryonic stem cells. Stem cells (Dayton, Ohio) 24, 1678–1688

    Article  Google Scholar 

  38. Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., and Bhatia, M. (2003) Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102, 906–915

    Article  CAS  PubMed  Google Scholar 

  39. Olsen, A. L., Stachura, D. L., and Weiss, M. J. (2006) Designer blood: creating hematopoietic lineages from embryonic stem cells. Blood 107, 1265–1275

    Article  CAS  PubMed  Google Scholar 

  40. Reubinoff, B. E., Itsykson, P., Turetsky, T., Pera, M. F., Reinhartz, E., Itzik, A., and Ben-Hur, T. (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19, 1134–1140

    Article  CAS  PubMed  Google Scholar 

  41. Tabar, V., Panagiotakos, G., Greenberg, E. D., Chan, B. K., Sadelain, M., Gutin, P. H., and Studer, L. (2005) Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol 23, 601–606

    Article  CAS  PubMed  Google Scholar 

  42. Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K. L., and Tzukerman, M. (2001) Insulin production by human embryonic stem cells. Diabetes 50, 1691–1697

    Article  CAS  PubMed  Google Scholar 

  43. Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., and Langer, R. (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 99, 4391–4396

    Google Scholar 

  44. Bautch, V. L. (2002) Embryonic stem cell differentiation and the vascular lineage. Methods Mol Biol 185, 117–125

    CAS  PubMed  Google Scholar 

  45. Sottile, V., Thomson, A., and McWhir, J. (2003) In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells 5, 149–155

    Article  CAS  PubMed  Google Scholar 

  46. Bielby, R. C., Boccaccini, A. R., Polak, J. M., and Buttery, L. D. (2004) In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng 10, 1518–1525

    CAS  PubMed  Google Scholar 

  47. Shirahashi, H., Wu, J., Yamamoto, N., Catana, A., Wege, H., Wager, B., Okita, K., and Zern, M. A. (2004) Differentiation of human and mouse embryonic stem cells along a hepatocyte lineage. Cell Transplant 13, 197–211

    Article  PubMed  Google Scholar 

  48. Lerou, P. H., and Daley, G. Q. (2005) Therapeutic potential of embryonic stem cells. Blood Rev 19, 321–331

    Article  PubMed  Google Scholar 

  49. Vogel, G. (2005) Stem cells. Deriving 'controversy-free' ES cells is controversial. Science NY 310, 416–417

    CAS  Google Scholar 

  50. Daar, A. S., and Sheremeta, L. (2003) The science of stem cells: ethical, legal and social issues. Exp Clin Transplant 1, 139–146

    PubMed  Google Scholar 

  51. Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J. P., Wang, S., Morton, C. C., McMahon, A. P., Powers, D., and Melton, D. A. (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350, 1353–1356

    Article  CAS  PubMed  Google Scholar 

  52. Reicin, C., and McMahon, E. (2005) Stem cell research in Canada: business opportunities for U.S. companies. J Biolaw Bus 8, 61–64

    PubMed  Google Scholar 

  53. Klimanskaya, I., Chung, Y., Becker, S., Lu, S. J., and Lanza, R. (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444, 481–485

    Google Scholar 

  54. Pearson, H. (2006) Early embryos can yield stem cells... and survive. Nature 442, 858

    Article  CAS  PubMed  Google Scholar 

  55. Trounson, A. O. (2001) The derivation and potential use of human embryonic stem cells. Reprod Fertil Dev 13, 523–532

    Article  CAS  PubMed  Google Scholar 

  56. Snodgrass, H. R., Graham, D. K., Stanford, W. L., and Licato, L. L. (1993) Embryonic stem cells: research and clinical potentials. In Peripheral Blood Stem Cells (Smith, D. M., Sacher, R. A., and Jefferies, L. C., eds.), American Association of Blood Banks, Bethesda, MD, pp. 65–83

    Google Scholar 

  57. Taylor, C. J., Bolton, E. M., Pocock, S., Sharples, L. D., Pedersen, R. A., and Bradley, J. A. (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366, 2019–2025

    Article  PubMed  Google Scholar 

  58. Fujikawa, T., Oh, S. H., Pi, L., Hatch, H. M., Shupe, T., and Petersen, B. E. (2005) Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 166, 1781–1791

    CAS  PubMed  Google Scholar 

  59. Przyborski, S. A. (2005) Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem cells (Dayton, Ohio) 23, 1242–1250

    Article  Google Scholar 

  60. Temple, S. (2001) The development of neural stem cells. Nature 414, 112–117

    Article  CAS  PubMed  Google Scholar 

  61. Gage, F. H. (2000) Mammalian neural stem cells. Science NY 287, 1433–1438

    CAS  Google Scholar 

  62. Nyfeler, Y., Kirch, R. D., Mantei, N., Leone, D. P., Radtke, F., Suter, U., and Taylor, V. (2005) Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. Embo J 24, 3504–3515

    Article  CAS  PubMed  Google Scholar 

  63. Toma, J. G., Akhavan, M., Fernandes, K. J., Barnabe-Heider, F., Sadikot, A., Kaplan, D. R., and Miller, F. D. (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3, 778–784

    Article  CAS  PubMed  Google Scholar 

  64. Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W. E., Rendl, M., and Fuchs, E. (2004) Defining the epithelial stem cell niche in skin. Science NY 303, 359–363

    CAS  Google Scholar 

  65. Germain, L., Auger, F. A., Grandbois, E., Guignard, R., Giasson, M., Boisjoly, H., and Guerin, S. L. (1999) Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology 67, 140–147

    Article  CAS  PubMed  Google Scholar 

  66. Shi, X., and Garry, D. J. (2006) Muscle stem cells in development, regeneration, and disease. Genes Dev 20, 1692–1708

    Article  CAS  PubMed  Google Scholar 

  67. Mauro, A. (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9, 493–495

    Article  CAS  PubMed  Google Scholar 

  68. Bryder, D., Rossi, D. J., and Weissman, I. L. (2006) Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169, 338–346

    Article  CAS  PubMed  Google Scholar 

  69. Spangrude, G. J., Heimfeld, S., and Weissman, I. L. (1988) Purification and characterization of mouse hematopoietic stem cells. Science NY 241, 58–62

    CAS  Google Scholar 

  70. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A., and Verfaillie, C. M. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49

    Article  CAS  PubMed  Google Scholar 

  71. Owen, M., and Friedenstein, A. J. (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136, 42–60

    CAS  PubMed  Google Scholar 

  72. Dzau, V. J., Gnecchi, M., and Pachori, A. S. (2005) Enhancing stem cell therapy through genetic modification. J Am Coll Cardiol 46, 1351–1353

    Article  PubMed  Google Scholar 

  73. Oh, S. H., Hatch, H. M., and Petersen, B. E. (2002) Hepatic oval 'stem' cell in liver regeneration. Semin Cell Dev Biol 13, 405–409

    Article  CAS  PubMed  Google Scholar 

  74. Herrera, M. B., Bruno, S., Buttiglieri, S., Tetta, C., Gatti, S., Deregibus, M. C., Bussolati, B., and Camussi, G. (2006) Isolation and characterization of a stem cell population from adult human liver. Stem cells (Dayton, Ohio) 24, 2840–2850

    Article  CAS  Google Scholar 

  75. Horwitz, E. M., Gordon, P. L., Koo, W. K., Marx, J. C., Neel, M. D., McNall, R. Y., Muul, L., and Hofmann, T. (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proceedings of the National Academy of Sciences of the United States of America 99, 8932–8937

    Google Scholar 

  76. Briggs, R., and King, T. J. (1952) Transplantation of Living Nuclei From Blastula Cells into Enucleated Frogs' Eggs. Proc Natl Acad Sci USA 38, 455–463

    Google Scholar 

  77. Gurdon, J. B. (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10, 622–640

    CAS  PubMed  Google Scholar 

  78. Gurdon, J. B. (2006) From Nuclear Transfer to Nuclear Reprogramming: The Reversal of Cell Differentiation. Annu Rev Cell Dev Biol 22, 1–22

    Google Scholar 

  79. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813

    Article  CAS  PubMed  Google Scholar 

  80. Jouneau, A., Zhou, Q., Camus, A., Brochard, V., Maulny, L., Collignon, J., and Renard, J. P. (2006) Developmental abnormalities of NT mouse embryos appear early after implantation. Development 133, 1597–1607

    Article  CAS  PubMed  Google Scholar 

  81. Hochedlinger, K., and Jaenisch, R. (2006) Nuclear reprogramming and pluripotency. Nature 441, 1061–1067

    Article  CAS  PubMed  Google Scholar 

  82. Meissner, A., and Jaenisch, R. (2006) Mammalian nuclear transfer. Dev Dyn 235, 2460–2469

    Article  PubMed  Google Scholar 

  83. Rideout, W. M., 3rd, Hochedlinger, K., Kyba, M., Daley, G. Q., and Jaenisch, R. (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17–27

    Article  CAS  PubMed  Google Scholar 

  84. Kennedy, D. (2006) Editorial retraction. Science (New York, N.Y 311, 335

    CAS  Google Scholar 

  85. Egli, D., Rosains, J., Birkhoff, G., and Eggan, K. (2007) Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447, 679–685

    Article  CAS  PubMed  Google Scholar 

  86. Chen, Y., He, Z. X., Liu, A., Wang, K., Mao, W. W., Chu, J. X., Lu, Y., Fang, Z. F., Shi, Y. T., Yang, Q. Z., Chen da, Y., Wang, M. K., Li, J. S., Huang, S. L., Kong, X. Y., Shi, Y. Z., Wang, Z. Q., Xia, J. H., Long, Z. G., Xue, Z. G., Ding, W. X., and Sheng, H. Z. (2003) Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes. Cell Res 13, 251–263

    Article  PubMed  Google Scholar 

  87. Tada, M., Morizane, A., Kimura, H., Kawasaki, H., Ainscough, J. F., Sasai, Y., Nakatsuji, N., and Tada, T. (2003) Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev Dyn 227, 504–510

    Article  CAS  PubMed  Google Scholar 

  88. Strelchenko, N., Kukharenko, V., Shkumatov, A., Verlinsky, O., Kuliev, A., and Verlinsky, Y. (2006) Reprogramming of human somatic cells by embryonic stem cell cytoplast. Reprod Biomed Online 12, 107–111

    Article  PubMed  Google Scholar 

  89. Cowan, C. A., Atienza, J., Melton, D. A., and Eggan, K. (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science NY 309, 1369–1373

    CAS  Google Scholar 

  90. Taranger, C. K., Noer, A., Sorensen, A. L., Hakelien, A. M., Boquest, A. C., and Collas, P. (2005) Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16, 5719–5735

    Article  CAS  PubMed  Google Scholar 

  91. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676

    Article  CAS  PubMed  Google Scholar 

  92. Blelloch, R., Wang, Z., Meissner, A., Pollard, S., Smith, A., and Jaenisch, R. (2006) Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem cells (Dayton, Ohio) 24, 2007–2013

    Article  CAS  Google Scholar 

  93. Czermin, B., and Imhof, A. (2003) The sounds of silence--histone deacetylation meets histone methylation. Genetica 117, 159–164

    Article  CAS  PubMed  Google Scholar 

  94. Jaenisch, R. (1997) DNA methylation and imprinting: why bother? Trends Genet 13, 323–329

    Article  CAS  PubMed  Google Scholar 

  95. Armstrong, L., Lako, M., Dean, W., and Stojkovic, M. (2006) Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem cells (Dayton, Ohio) 24, 805–814

    Article  Google Scholar 

  96. Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., Levine, S. S., Wernig, M., Tajonar, A., Ray, M. K., Bell, G. W., Otte, A. P., Vidal, M., Gifford, D. K., Young, R. A., and Jaenisch, R. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353

    Article  CAS  PubMed  Google Scholar 

  97. Papp, B., and Muller, J. (2006) Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev 20, 2041–2054

    Article  CAS  PubMed  Google Scholar 

  98. Muller-Ehmsen, J., Krausgrill, B., Burst, V., Schenk, K., Neisen, U. C., Fries, J. W., Fleischmann, B. K., Hescheler, J., and Schwinger, R. H. (2006) Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol 41, 876–884

    Google Scholar 

  99. Moore, M. A., and Metcalf, D. (1970) Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 18, 279–296

    Article  CAS  PubMed  Google Scholar 

  100. Tavian, M., and Peault, B. (2005) Embryonic development of the human hematopoietic system. Int J Dev Biol 49, 243–250

    Article  CAS  PubMed  Google Scholar 

  101. Haar, J. L., and Ackerman, G. A. (1971) A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. Anat Rec 170, 199–223

    Article  CAS  PubMed  Google Scholar 

  102. Huber, T. L., Kouskoff, V., Fehling, H. J., Palis, J., and Keller, G. (2004) Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432, 625–630

    Article  CAS  PubMed  Google Scholar 

  103. Shalaby, F., Ho, J., Stanford, W. L., Fischer, K. D., Schuh, A. C., Schwartz, L., Bernstein, A., and Rossant, J. (1997) A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89, 981–990

    Article  CAS  PubMed  Google Scholar 

  104. Zambidis, E. T., Oberlin, E., Tavian, M., and Peault, B. (2006) Blood-forming endothelium in human ontogeny: lessons from in utero development and embryonic stem cell culture. Trends Cardiovasc Med 16, 95–101

    Article  CAS  PubMed  Google Scholar 

  105. Harrison, D. E. (1980) Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood 55, 77–81

    CAS  PubMed  Google Scholar 

  106. Larochelle, A., Vormoor, J., Hanenberg, H., Wang, J. C., Bhatia, M., Lapidot, T., Moritz, T., Murdoch, B., Xiao, X. L., Kato, I., Williams, D. A., and Dick, J. E. (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat med 2, 1329–1337

    Article  CAS  PubMed  Google Scholar 

  107. Weissman, I. L. (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science NY 287, 1442–1446

    CAS  Google Scholar 

  108. Brown, J. M., and Weissman, I. L. (2004) Progress and prospects in hematopoietic stem cell expansion and transplantation. Exp hematol 32, 693–695

    Article  CAS  PubMed  Google Scholar 

  109. Gluckman, E., Broxmeyer, H. A., Auerbach, A. D., Friedman, H. S., Douglas, G. W., Devergie, A., Esperou, H., Thierry, D., Socie, G., Lehn, P., and et al. (1989) Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321, 1174–1178

    Article  CAS  PubMed  Google Scholar 

  110. Kurtzberg, J., Laughlin, M., Graham, M. L., Smith, C., Olson, J. F., Halperin, E. C., Ciocci, G., Carrier, C., Stevens, C. E., and Rubinstein, P. (1996) Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med 335, 157–166

    Article  CAS  PubMed  Google Scholar 

  111. Wagner, J. E., Kernan, N. A., Steinbuch, M., Broxmeyer, H. E., and Gluckman, E. (1995) Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and non-malignant disease. Lancet 346, 214–219

    Article  CAS  PubMed  Google Scholar 

  112. Brunstein, C. G., and Wagner, J. E. (2006) Umbilical cord blood transplantation and banking. Annu Rev Med 57, 403–417

    Article  CAS  PubMed  Google Scholar 

  113. Gluckman, E., Rocha, V., Boyer-Chammard, A., Locatelli, F., Arcese, W., Pasquini, R., Ortega, J., Souillet, G., Ferreira, E., Laporte, J. P., Fernandez, M., and Chastang, C. (1997) Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med 337, 373–381

    Article  CAS  PubMed  Google Scholar 

  114. Rubinstein, P., Carrier, C., Scaradavou, A., Kurtzberg, J., Adamson, J., Migliaccio, A. R., Berkowitz, R. L., Cabbad, M., Dobrila, N. L., Taylor, P. E., Rosenfield, R. E., and Stevens, C. E. (1998) Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 339, 1565–1577

    Article  CAS  PubMed  Google Scholar 

  115. Gluckman, E., Rocha, V., and Chevret, S. (2001) Results of unrelated umbilical cord blood hematopoietic stem cell transplant. Transfus Clin Biol 8, 146–154

    Article  CAS  PubMed  Google Scholar 

  116. Bornstein, R., Flores, A. I., Montalban, M. A., del Rey, M. J., de la Serna, J., and Gilsanz, F. (2005) A modified cord blood collection method achieves sufficient cell levels for transplantation in most adult patients. Stem cells (Dayton, Ohio) 23, 324–334

    Article  Google Scholar 

  117. Audet, J., Miller, C. L., Eaves, C. J., and Piret, J. M. (2002) Common and distinct features of cytokine effects on hematopoietic stem and progenitor cells revealed by dose-response surface analysis. Biotechnol bioeng 80, 393–404

    Article  CAS  PubMed  Google Scholar 

  118. Audet, J., Miller, C. L., Rose-John, S., Piret, J. M., and Eaves, C. J. (2001) Distinct role of gp130 activation in promoting self-renewal divisions by mitogenically stimulated murine hematopoietic stem cells. Proc Natl Acad Sci USA 98, 1757–1762

    Google Scholar 

  119. Krosl, J., Austin, P., Beslu, N., Kroon, E., Humphries, R. K., and Sauvageau, G. (2003) In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat med 9, 1428–1432

    Article  CAS  PubMed  Google Scholar 

  120. Antonchuk, J., Sauvageau, G., and Humphries, R. K. (2002) HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109, 39–45

    Article  CAS  PubMed  Google Scholar 

  121. Madlambayan, G. J., Rogers, I., Kirouac, D. C., Yamanaka, N., Mazurier, F., Doedens, M., Casper, R. F., Dick, J. E., and Zandstra, P. W. (2005) Dynamic changes in cellular and microenvironmental composition can be controlled to elicit in vitro human hematopoietic stem cell expansion. Exp hematol 33, 1229–1239

    Article  CAS  PubMed  Google Scholar 

  122. Madlambayan, G. J., Rogers, I., Purpura, K. A., Ito, C., Yu, M., Kirouac, D., Casper, R. F., and Zandstra, P. W. (2006) Clinically relevant expansion of hematopoietic stem cells with conserved function in a single-use, closed-system bioprocess. Biol Blood Marrow Transplant 12, 1020–1030

    Article  PubMed  Google Scholar 

  123. Tian, X., Morris, J. K., Linehan, J. L., and Kaufman, D. S. (2004) Cytokine requirements differ for stroma and embryoid body-mediated hematopoiesis from human embryonic stem cells. Exp hematol 32, 1000–1009

    Article  CAS  PubMed  Google Scholar 

  124. Keller, G., Kennedy, M., Papayannopoulou, T., and Wiles, M. V. (1993) Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 13, 473–486

    CAS  PubMed  Google Scholar 

  125. Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C., and Keller, G. (1998) A common precursor for hematopoietic and endothelial cells. Development 125, 725–732

    CAS  PubMed  Google Scholar 

  126. Kyba, M., Perlingeiro, R. C., and Daley, G. Q. (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109, 29–37

    Article  CAS  PubMed  Google Scholar 

  127. Kyba, M., Perlingeiro, R. C., Hoover, R. R., Lu, C. W., Pierce, J., and Daley, G. Q. (2003) Enhanced hematopoietic differentiation of embryonic stem cells conditionally expressing Stat5. Proc Natl Acad Sci USA 100 Suppl 1, 11904–11910

    Google Scholar 

  128. Wang, Y., Yates, F., Naveiras, O., Ernst, P., and Daley, G. Q. (2005) Embryonic stem cell-derived hematopoietic stem cells. Proc Natl Acad Sci USA 102, 19081–19086

    Google Scholar 

  129. Wang, L., Menendez, P., Shojaei, F., Li, L., Mazurier, F., Dick, J. E., Cerdan, C., Levac, K., and Bhatia, M. (2005) Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med 201, 1603–1614

    Article  CAS  PubMed  Google Scholar 

  130. Lindvall, O., Kokaia, Z., and Martinez-Serrano, A. (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat med 10 Suppl, S42–50

    Article  PubMed  CAS  Google Scholar 

  131. Martino, G., and Pluchino, S. (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7, 395–406

    Article  CAS  PubMed  Google Scholar 

  132. Piccini, P., Brooks, D. J., Bjorklund, A., Gunn, R. N., Grasby, P. M., Rimoldi, O., Brundin, P., Hagell, P., Rehncrona, S., Widner, H., and Lindvall, O. (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat Neurosci 2, 1137–1140

    Article  CAS  PubMed  Google Scholar 

  133. Piccini, P., Lindvall, O., Bjorklund, A., Brundin, P., Hagell, P., Ceravolo, R., Oertel, W., Quinn, N., Samuel, M., Rehncrona, S., Widner, H., and Brooks, D. J. (2000) Delayed recovery of movement-related cortical function in Parkinson's disease after striatal dopaminergic grafts. Ann Neurol 48, 689–695

    Article  CAS  PubMed  Google Scholar 

  134. Reynolds, B. A., and Rietze, R. L. (2005) Neural stem cells and neurospheres--re-evaluating the relationship. Nat Methods 2, 333–336

    Article  CAS  PubMed  Google Scholar 

  135. Uchida, N., Buck, D. W., He, D., Reitsma, M. J., Masek, M., Phan, T. V., Tsukamoto, A. S., Gage, F. H., and Weissman, I. L. (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97, 14720–14725

    Google Scholar 

  136. Palmer, T. D., Schwartz, P. H., Taupin, P., Kaspar, B., Stein, S. A., and Gage, F. H. (2001) Cell culture. Progenitor cells from human brain after death. Nature 411, 42–43

    Article  CAS  PubMed  Google Scholar 

  137. Tropepe, V., Hitoshi, S., Sirard, C., Mak, T. W., Rossant, J., and van der Kooy, D. (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78

    Article  CAS  PubMed  Google Scholar 

  138. Li, X. J., and Zhang, S. C. (2006) In vitro differentiation of neural precursors from human embryonic stem cells. Methods Mol Biol 331, 169–177

    PubMed  Google Scholar 

  139. Doetsch, F. (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13, 543–550

    Article  CAS  PubMed  Google Scholar 

  140. Svendsen, C. N., Caldwell, M. A., Shen, J., ter Borg, M. G., Rosser, A. E., Tyers, P., Karmiol, S., and Dunnett, S. B. (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's disease. Exp Neurol 148, 135–146

    Article  CAS  PubMed  Google Scholar 

  141. Wu, S., Suzuki, Y., Kitada, M., Kitaura, M., Kataoka, K., Takahashi, J., Ide, C., and Nishimura, Y. (2001) Migration, integration, and differentiation of hippocampus-derived neurosphere cells after transplantation into injured rat spinal cord. Neurosci Lett 312, 173–176

    Article  CAS  PubMed  Google Scholar 

  142. Vroemen, M., Aigner, L., Winkler, J., and Weidner, N. (2003) Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Eur J Neurosci 18, 743–751

    Article  PubMed  Google Scholar 

  143. Cummings, B. J., Uchida, N., Tamaki, S. J., Salazar, D. L., Hooshmand, M., Summers, R., Gage, F. H., and Anderson, A. J. (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA 102, 14069–14074

    Google Scholar 

  144. Fernandes, K. J., McKenzie, I. A., Mill, P., Smith, K. M., Akhavan, M., Barnabe-Heider, F., Biernaskie, J., Junek, A., Kobayashi, N. R., Toma, J. G., Kaplan, D. R., Labosky, P. A., Rafuse, V., Hui, C. C., and Miller, F. D. (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6, 1082–1093

    Article  CAS  PubMed  Google Scholar 

  145. McKenzie, I. A., Biernaskie, J., Toma, J. G., Midha, R., and Miller, F. D. (2006) Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci 26, 6651–6660

    Article  CAS  PubMed  Google Scholar 

  146. Kopen, G. C., Prockop, D. J., and Phinney, D. G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96, 10711–10716

    Google Scholar 

  147. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., Freeman, T. B., Saporta, S., Janssen, W., Patel, N., Cooper, D. R., and Sanberg, P. R. (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164, 247–256

    Article  CAS  PubMed  Google Scholar 

  148. Habich, A., Jurga, M., Markiewicz, I., Lukomska, B., Bany-Laszewicz, U., and Domanska-Janik, K. (2006) Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp hematol 34, 914–925

    Article  CAS  PubMed  Google Scholar 

  149. El-Badri, N. S., Hakki, A., Saporta, S., Liang, X., Madhusodanan, S., Willing, A. E., Sanberg, C. D., and Sanberg, P. R. (2006) Cord blood mesenchymal stem cells: Potential use in neurological disorders. Stem Cells Dev 15, 497–506

    Article  CAS  PubMed  Google Scholar 

  150. Park, H. C., Shim, Y. S., Ha, Y., Yoon, S. H., Park, S. R., Choi, B. H., and Park, H. S. (2005) Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 11, 913–922

    Article  CAS  PubMed  Google Scholar 

  151. Mazzini, L., Mareschi, K., Ferrero, I., Vassallo, E., Oliveri, G., Boccaletti, R., Testa, L., Livigni, S., and Fagioli, F. (2006) Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol Res 28, 523–526

    Article  PubMed  Google Scholar 

  152. Vendrame, M., Cassady, J., Newcomb, J., Butler, T., Pennypacker, K. R., Zigova, T., Sanberg, C. D., Sanberg, P. R., and Willing, A. E. (2004) Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 35, 2390–2395

    Article  PubMed  Google Scholar 

  153. Bain, G., Kitchens, D., Yao, M., Huettner, J. E., and Gottlieb, D. I. (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168, 342–357

    Article  CAS  PubMed  Google Scholar 

  154. Okabe, S., Forsberg-Nilsson, K., Spiro, A. C., Segal, M., and McKay, R. D. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59, 89–102

    Article  CAS  PubMed  Google Scholar 

  155. Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M., and McKay, R. D. (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18, 675–679

    Article  CAS  PubMed  Google Scholar 

  156. Schmandt, T., Meents, E., Gossrau, G., Gornik, V., Okabe, S., and Brustle, O. (2005) High-purity lineage selection of embryonic stem cell-derived neurons. Stem Cells Dev 14, 55–64

    Article  CAS  PubMed  Google Scholar 

  157. Glaser, T., Perez-Bouza, A., Klein, K., and Brustle, O. (2005) Generation of purified oligodendrocyte progenitors from embryonic stem cells. Faseb J 19, 112–114

    CAS  PubMed  Google Scholar 

  158. Glass, R., Synowitz, M., Kronenberg, G., Walzlein, J. H., Markovic, D. S., Wang, L. P., Gast, D., Kiwit, J., Kempermann, G., and Kettenmann, H. (2005) Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J Neurosci 25, 2637–2646

    Article  CAS  PubMed  Google Scholar 

  159. Chi, L., Ke, Y., Luo, C., Li, B., Gozal, D., Kalyanaraman, B., and Liu, R. (2006) Motor neuron degeneration promotes neural progenitor cell proliferation, migration, and neurogenesis in the spinal cords of amyotrophic lateral sclerosis mice. Stem cells (Dayton, Ohio) 24, 34–43

    Article  Google Scholar 

  160. Muller, F. J., Snyder, E. Y., and Loring, J. F. (2006) Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 7, 75–84

    Article  PubMed  CAS  Google Scholar 

  161. Buckingham, M., Bajard, L., Chang, T., Daubas, P., Hadchouel, J., Meilhac, S., Montarras, D., Rocancourt, D., and Relaix, F. (2003) The formation of skeletal muscle: from somite to limb. J Anat 202, 59–68

    Article  PubMed  Google Scholar 

  162. Buckingham, M. (2001) Skeletal muscle formation in vertebrates. Curr Opin Genet Dev 11, 440–448

    Article  CAS  PubMed  Google Scholar 

  163. Asakura, A. (2003) Stem cells in adult skeletal muscle. Trends Cardiovasc Med 13, 123–128

    Article  CAS  PubMed  Google Scholar 

  164. Seale, P., and Rudnicki, M. A. (2000) A new look at the origin, function, and "stem-cell" status of muscle satellite cells. Dev Biol 218, 115–124

    Article  CAS  PubMed  Google Scholar 

  165. Holterman, C. E., and Rudnicki, M. A. (2005) Molecular regulation of satellite cell function. Semin Cell Dev Biol 16, 575–584

    Article  CAS  PubMed  Google Scholar 

  166. Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., and Rudnicki, M. A. (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786

    Article  CAS  PubMed  Google Scholar 

  167. Shinin, V., Gayraud-Morel, B., Gomes, D., and Tajbakhsh, S. (2006) Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 8, 677–687

    Article  CAS  PubMed  Google Scholar 

  168. Gussoni, E., Soneoka, Y., Strickland, C. D., Buzney, E. A., Khan, M. K., Flint, A. F., Kunkel, L. M., and Mulligan, R. C. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394

    CAS  PubMed  Google Scholar 

  169. Asakura, A., and Rudnicki, M. A. (2002) Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp hematol 30, 1339–1345

    Article  PubMed  Google Scholar 

  170. Qu-Petersen, Z., Deasy, B., Jankowski, R., Ikezawa, M., Cummins, J., Pruchnic, R., Mytinger, J., Cao, B., Gates, C., Wernig, A., and Huard, J. (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157, 851–864

    Article  CAS  PubMed  Google Scholar 

  171. Komori, T. (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99, 1233–1239

    Article  CAS  PubMed  Google Scholar 

  172. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science NY 284, 143–147

    CAS  Google Scholar 

  173. Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Deans, R. J., Krause, D. S., and Keating, A. (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7, 393–395

    Article  CAS  PubMed  Google Scholar 

  174. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317

    Article  CAS  PubMed  Google Scholar 

  175. Krampera, M., Pizzolo, G., Aprili, G., and Franchini, M. (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39, 678–683

    Article  CAS  PubMed  Google Scholar 

  176. Gang, E. J., Bosnakovski, D., Figueiredo, C. A., Visser, J. W., and Perlingeiro, R. C. (2006) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109, 1743–1751

    Google Scholar 

  177. Bonyadi, M., Waldman, S. D., Liu, D., Aubin, J. E., Grynpas, M. D., and Stanford, W. L. (2003) Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci USA 100, 5840–5845

    Google Scholar 

  178. Holmes, C., Khan, T. S., Owen, C., Ciliberti, N., Grynpas, M. D., and Stanford, W. L. (2007) Longitudinal Analysis of Mesenchymal Progenitors and Bone Quality in the Stem Cell Antigen-1 Null Osteoporotic Mouse. J Bone Miner Res 22, 1373–1386

    Google Scholar 

  179. Lee, R. H., Kim, B., Choi, I., Kim, H., Choi, H. S., Suh, K., Bae, Y. C., and Jung, J. S. (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14, 311–324

    Article  CAS  PubMed  Google Scholar 

  180. Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., and Davies, J. E. (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem cells (Dayton, Ohio) 23, 220–229

    Article  Google Scholar 

  181. Shih, D. T., Lee, D. C., Chen, S. C., Tsai, R. Y., Huang, C. T., Tsai, C. C., Shen, E. Y., and Chiu, W. T. (2005) Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem cells (Dayton, Ohio) 23, 1012–1020

    Article  CAS  Google Scholar 

  182. Roufosse, C. A., Direkze, N. C., Otto, W. R., and Wright, N. A. (2004) Circulating mesenchymal stem cells. Int J Biochem Cell Biol 36, 585–597

    Article  CAS  PubMed  Google Scholar 

  183. Quarto, R., Mastrogiacomo, M., Cancedda, R., Kutepov, S. M., Mukhachev, V., Lavroukov, A., Kon, E., and Marcacci, M. (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344, 385–386

    Article  CAS  PubMed  Google Scholar 

  184. Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., Koo, W. W., Gordon, P. L., Neel, M., Sussman, M., Orchard, P., Marx, J. C., Pyeritz, R. E., and Brenner, M. K. (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat med 5, 309–313

    Article  CAS  PubMed  Google Scholar 

  185. Horwitz, E. M., Prockop, D. J., Gordon, P. L., Koo, W. W., Fitzpatrick, L. A., Neel, M. D., McCarville, M. E., Orchard, P. J., Pyeritz, R. E., and Brenner, M. K. (2001) Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97, 1227–1231

    Article  CAS  PubMed  Google Scholar 

  186. Le Blanc, K., Gotherstrom, C., Ringden, O., Hassan, M., McMahon, R., Horwitz, E., Anneren, G., Axelsson, O., Nunn, J., Ewald, U., Norden-Lindeberg, S., Jansson, M., Dalton, A., Astrom, E., and Westgren, M. (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79, 1607–1614

    Article  PubMed  Google Scholar 

  187. Wang, X., Li, F., and Niyibizi, C. (2006) Progenitors systemically transplanted into neonatal mice localize to areas of active bone formation in vivo: implications of cell therapy for skeletal diseases. Stem cells (Dayton, Ohio) 24, 1869–1878

    Article  CAS  Google Scholar 

  188. Kuo, C. K., Li, W. J., Mauck, R. L., and Tuan, R. S. (2006) Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol 18, 64–73

    Article  PubMed  Google Scholar 

  189. Breinan, H. A., Minas, T., Hsu, H. P., Nehrer, S., Sledge, C. B., and Spector, M. (1997) Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am 79, 1439–1451

    CAS  PubMed  Google Scholar 

  190. Sams, A. E., and Nixon, A. J. (1995) Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects. Osteoarthritis Cartilage 3, 47–59

    Article  CAS  PubMed  Google Scholar 

  191. Yoo, J. U., Barthel, T. S., Nishimura, K., Solchaga, L., Caplan, A. I., Goldberg, V. M., and Johnstone, B. (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80, 1745–1757

    CAS  PubMed  Google Scholar 

  192. Worster, A. A., Nixon, A. J., Brower-Toland, B. D., and Williams, J. (2000) Effect of transforming growth factor beta1 on chondrogenic differentiation of cultured equine mesenchymal stem cells. Am J Vet Res 61, 1003–1010

    Article  CAS  PubMed  Google Scholar 

  193. Sekiya, I., Larson, B. L., Smith, J. R., Pochampally, R., Cui, J. G., and Prockop, D. J. (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem cells (Dayton, Ohio) 20, 530–541

    Article  Google Scholar 

  194. Wang, D. W., Fermor, B., Gimble, J. M., Awad, H. A., and Guilak, F. (2005) Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. J Cell Physiol 204, 184–191

    Article  CAS  PubMed  Google Scholar 

  195. Sakai, D., Mochida, J., Iwashina, T., Watanabe, T., Nakai, T., Ando, K., and Hotta, T. (2005) Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine 30, 2379–2387

    Article  PubMed  Google Scholar 

  196. Adachi, N., Sato, K., Usas, A., Fu, F. H., Ochi, M., Han, C. W., Niyibizi, C., and Huard, J. (2002) Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol 29, 1920–1930

    CAS  PubMed  Google Scholar 

  197. Kafienah, W., Mistry, S., Dickinson, S. C., Sims, T. J., Learmonth, I., and Hollander, A. P. (2007) Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis rheum 56, 177–187

    Article  PubMed  Google Scholar 

  198. Miller, L. W., and Missov, E. D. (2001) Epidemiology of heart failure. Cardiol Clin 19, 547–555

    Article  CAS  PubMed  Google Scholar 

  199. Buckingham, M., Meilhac, S., and Zaffran, S. (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6, 826–835

    Article  CAS  PubMed  Google Scholar 

  200. Solloway, M. J., and Harvey, R. P. (2003) Molecular pathways in myocardial development: a stem cell perspective. Cardiovasc Res 58, 264–277

    Article  CAS  PubMed  Google Scholar 

  201. Oh, H., Chi, X., Bradfute, S. B., Mishina, Y., Pocius, J., Michael, L. H., Behringer, R. R., Schwartz, R. J., Entman, M. L., and Schneider, M. D. (2004) Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann N Y Acad Sci 1015, 182–189

    Article  PubMed  Google Scholar 

  202. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., Leri, A., Kajstura, J., Nadal-Ginard, B., and Anversa, P. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776

    Article  CAS  PubMed  Google Scholar 

  203. Martin, C. M., Meeson, A. P., Robertson, S. M., Hawke, T. J., Richardson, J. A., Bates, S., Goetsch, S. C., Gallardo, T. D., and Garry, D. J. (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265, 262–275

    Article  CAS  PubMed  Google Scholar 

  204. Urbanek, K., Torella, D., Sheikh, F., De Angelis, A., Nurzynska, D., Silvestri, F., Beltrami, C. A., Bussani, R., Beltrami, A. P., Quaini, F., Bolli, R., Leri, A., Kajstura, J., and Anversa, P. (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA 102, 8692–8697

    Google Scholar 

  205. Cai, C. L., Liang, X., Shi, Y., Chu, P. H., Pfaff, S. L., Chen, J., and Evans, S. (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5, 877–889

    Article  CAS  PubMed  Google Scholar 

  206. Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., Lin, L. Z., Cai, C. L., Lu, M. M., Reth, M., Platoshyn, O., Yuan, J. X., Evans, S., and Chien, K. R. (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647–653

    Article  CAS  PubMed  Google Scholar 

  207. Kattman, S. J., Huber, T. L., and Keller, G. M. (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11, 723–732

    Article  CAS  PubMed  Google Scholar 

  208. Moretti, A., Caron, L., Nakano, A., Lam, J. T., Bernshausen, A., Chen, Y., Qyang, Y., Bu, L., Sasaki, M., Martin-Puig, S., Sun, Y., Evans, S. M., Laugwitz, K. L., and Chien, K. R. (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151–1165

    Article  CAS  PubMed  Google Scholar 

  209. Wu, S. M., Fujiwara, Y., Cibulsky, S. M., Clapham, D. E., Lien, C. L., Schultheiss, T. M., and Orkin, S. H. (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127, 1137–1150

    Article  CAS  PubMed  Google Scholar 

  210. Urbanek, K., Cesselli, D., Rota, M., Nascimbene, A., De Angelis, A., Hosoda, T., Bearzi, C., Boni, A., Bolli, R., Kajstura, J., Anversa, P., and Leri, A. (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA 103, 9226–9231

    Google Scholar 

  211. Ayach, B. B., Yoshimitsu, M., Dawood, F., Sun, M., Arab, S., Chen, M., Higuchi, K., Siatskas, C., Lee, P., Lim, H., Zhang, J., Cukerman, E., Stanford, W. L., Medin, J. A., and Liu, P. P. (2006) Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction. Proc Natl Acad Sci USA 103, 2304–2309

    Google Scholar 

  212. Mummery, C. (2007) Cardiomyocytes from human embryonic stem cells: more than heart repair alone. Bioessays 29, 572–579

    Article  CAS  PubMed  Google Scholar 

  213. Wei, H., Juhasz, O., Li, J., Tarasova, Y. S., and Boheler, K. R. (2005) Embryonic stem cells and cardiomyocyte differentiation: phenotypic and molecular analyses. J Cell Mol Med 9, 804–817.

    Article  PubMed  Google Scholar 

  214. Maltsev, V. A., Wobus, A. M., Rohwedel, J., Bader, M., and Hescheler, J. (1994) Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ Res 75, 233–244

    CAS  PubMed  Google Scholar 

  215. Boheler, K. R., Czyz, J., Tweedie, D., Yang, H. T., Anisimov, S. V., and Wobus, A. M. (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91, 189–201

    Article  CAS  PubMed  Google Scholar 

  216. Zandstra, P. W., Bauwens, C., Yin, T., Liu, Q., Schiller, H., Zweigerdt, R., Pasumarthi, K. B., and Field, L. J. (2003) Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng 9, 767–778

    Article  CAS  PubMed  Google Scholar 

  217. Metzger, J. M., Lin, W. I., Johnston, R. A., Westfall, M. V., and Samuelson, L. C. (1995) Myosin heavy chain expression in contracting myocytes isolated during embryonic stem cell cardiogenesis. Circ Res 76, 710–719

    CAS  PubMed  Google Scholar 

  218. Klug, M. G., Soonpaa, M. H., Koh, G. Y., and Field, L. J. (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98, 216–224

    Article  CAS  PubMed  Google Scholar 

  219. Kolossov, E., Fleischmann, B. K., Liu, Q., Bloch, W., Viatchenko-Karpinski, S., Manzke, O., Ji, G. J., Bohlen, H., Addicks, K., and Hescheler, J. (1998) Functional characteristics of ES cell-derived cardiac precursor cells identified by tissue-specific expression of the green fluorescent protein. J Cell Biol 143, 2045–2056

    Article  CAS  PubMed  Google Scholar 

  220. Meyer, N., Jaconi, M., Landopoulou, A., Fort, P., and Puceat, M. (2000) A fluorescent reporter gene as a marker for ventricular specification in ES-derived cardiac cells. FEBS Lett 478, 151–158

    Article  CAS  PubMed  Google Scholar 

  221. Fijnvandraat, A. C., van Ginneken, A. C., Schumacher, C. A., Boheler, K. R., Lekanne Deprez, R. H., Christoffels, V. M., and Moorman, A. F. (2003) Cardiomyocytes purified from differentiated embryonic stem cells exhibit characteristics of early chamber myocardium. J Mol Cell Cardiol 35, 1461–1472

    Article  CAS  PubMed  Google Scholar 

  222. Singla, D. K., Hacker, T. A., Ma, L., Douglas, P. S., Sullivan, R., Lyons, G. E., and Kamp, T. J. (2006) Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol 40, 195–200

    Article  CAS  PubMed  Google Scholar 

  223. Leor, J., Gerecht-Nir, S., Cohen, S., Miller, L., Holbova, R., Ziskind, A., Shachar, M., Feinberg, M. S., Guetta, E., and Itskovitz-Eldor, J. (2007) Human embryonic stem cell transplantation to repair the infarcted myocardium. Hear t 93, 1173–1174

    Google Scholar 

  224. Murry, C. E., Field, L. J., and Menasche, P. (2005) Cell-based cardiac repair: reflections at the 10-year point. Circulation 112, 3174–3183

    Article  PubMed  Google Scholar 

  225. Menasche, P., Hagege, A. A., Scorsin, M., Pouzet, B., Desnos, M., Duboc, D., Schwartz, K., Vilquin, J. T., and Marolleau, J. P. (2001) Myoblast transplantation for heart failure. Lancet 357, 279–280

    Article  CAS  PubMed  Google Scholar 

  226. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A., and Anversa, P. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705

    Article  CAS  PubMed  Google Scholar 

  227. Badorff, C., Brandes, R. P., Popp, R., Rupp, S., Urbich, C., Aicher, A., Fleming, I., Busse, R., Zeiher, A. M., and Dimmeler, S. (2003) Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107, 1024–1032

    Article  PubMed  Google Scholar 

  228. Siepe, M., Heilmann, C., von Samson, P., Menasche, P., and Beyersdorf, F. (2005) Stem cell research and cell transplantation for myocardial regeneration. Eur J Cardiothorac Surg 28, 318–324

    Article  PubMed  Google Scholar 

  229. Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., Noiseux, N., Zhang, L., Pratt, R. E., Ingwall, J. S., and Dzau, V. J. (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat med 11, 367–368

    Article  CAS  PubMed  Google Scholar 

  230. Fazel, S., Cimini, M., Chen, L., Li, S., Angoulvant, D., Fedak, P., Verma, S., Weisel, R. D., Keating, A., and Li, R. K. (2006) Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest 116, 1865–1877

    Article  CAS  PubMed  Google Scholar 

  231. Reinecke, H., Poppa, V., and Murry, C. E. (2002) Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 34, 241–249

    Article  CAS  PubMed  Google Scholar 

  232. Winitsky, S. O., Gopal, T. V., Hassanzadeh, S., Takahashi, H., Gryder, D., Rogawski, M. A., Takeda, K., Yu, Z. X., Xu, Y. H., and Epstein, N. D. (2005) Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro. PLoS Biol 3, e87

    Article  PubMed  CAS  Google Scholar 

  233. Chien, K. R. (2005) Alchemy and the new age of cardiac muscle cell biology. PLoS Biol 3, e131

    Article  PubMed  CAS  Google Scholar 

  234. Wagers, A. J., and Weissman, I. L. (2004) Plasticity of adult stem cells. Cell 116, 639–648

    Article  CAS  PubMed  Google Scholar 

  235. Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., Pasumarthi, K. B., Virag, J. I., Bartelmez, S. H., Poppa, V., Bradford, G., Dowell, J. D., Williams, D. A., and Field, L. J. (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668

    Article  CAS  PubMed  Google Scholar 

  236. Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J., Majesky, M. W., Entman, M. L., Michael, L. H., Hirschi, K. K., and Goodell, M. A. (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107, 1395–1402

    Article  CAS  PubMed  Google Scholar 

  237. Janssens, S., Dubois, C., Bogaert, J., Theunissen, K., Deroose, C., Desmet, W., Kalantzi, M., Herbots, L., Sinnaeve, P., Dens, J., Maertens, J., Rademakers, F., Dymarkowski, S., Gheysens, O., Van Cleemput, J., Bormans, G., Nuyts, J., Belmans, A., Mortelmans, L., Boogaerts, M., and Van de Werf, F. (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367, 113–121

    Article  PubMed  Google Scholar 

  238. Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., Li, T., Isner, J. M., and Asahara, T. (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97, 3422–3427

    Google Scholar 

  239. Vesely, I. (2005) Heart valve tissue engineering. Circ Res 97, 743–755

    Article  CAS  PubMed  Google Scholar 

  240. Dalrymple-Hay, M. J., Pearce, R., Dawkins, S., Haw, M. P., Lamb, R. K., Livesey, S. A., and Monro, J. L. (2000) A single-center experience with 1,378 CarboMedics mechanical valve implants. Ann Thorac Surg 69, 457–463

    Article  CAS  PubMed  Google Scholar 

  241. Schoen, F. J., and Levy, R. J. (1999) Founder's Award, 25th Annual Meeting of the Society for Biomaterials, perspectives. Providence, RI, April 28-May 2, 1999. Tissue heart valves: current challenges and future research perspectives. J Biomed Mater Res 47, 439–465

    Article  CAS  PubMed  Google Scholar 

  242. Schoen, F. J., and Levy, R. J. (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 79, 1072–1080

    Article  PubMed  Google Scholar 

  243. Durbin, A. D., and Gotlieb, A. I. (2002) Advances towards understanding heart valve response to injury. Cardiovasc Pathol 11, 69–77

    Article  PubMed  Google Scholar 

  244. Sutherland, F. W., Perry, T. E., Yu, Y., Sherwood, M. C., Rabkin, E., Masuda, Y., Garcia, G. A., McLellan, D. L., Engelmayr, G. C., Jr., Sacks, M. S., Schoen, F. J., and Mayer, J. E., Jr. (2005) From stem cells to viable autologous semilunar heart valve. Circulation 111, 2783–2791

    Article  PubMed  Google Scholar 

  245. Hoerstrup, S. P., Kadner, A., Melnitchouk, S., Trojan, A., Eid, K., Tracy, J., Sodian, R., Visjager, J. F., Kolb, S. A., Grunenfelder, J., Zund, G., and Turina, M. I. (2002) Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation 106, I143–150

    PubMed  Google Scholar 

  246. Neuenschwander, S., and Hoerstrup, S. P. (2004) Heart valve tissue engineering. Transpl Immunol 12, 359–365

    Article  CAS  PubMed  Google Scholar 

  247. Riha, G. M., Lin, P. H., Lumsden, A. B., Yao, Q., and Chen, C. (2005) Review: application of stem cells for vascular tissue engineering. Tissue Eng 11, 1535–1552

    Article  CAS  PubMed  Google Scholar 

  248. Deutsch, G., Jung, J., Zheng, M., Lora, J., and Zaret, K. S. (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128, 871–881

    CAS  PubMed  Google Scholar 

  249. Shafritz, D. A., Oertel, M., Menthena, A., Nierhoff, D., and Dabeva, M. D. (2006) Liver stem cells and prospects for liver reconstitution by transplanted cells. Hepatology 43, S89–98

    Article  CAS  PubMed  Google Scholar 

  250. Fausto, N., Campbell, J. S., and Riehle, K. J. (2006) Liver regeneration. Hepatology 43, S45–53

    Article  CAS  PubMed  Google Scholar 

  251. Nussler, A., Konig, S., Ott, M., Sokal, E., Christ, B., Thasler, W., Brulport, M., Gabelein, G., Schormann, W., Schulze, M., Ellis, E., Kraemer, M., Nocken, F., Fleig, W., Manns, M., Strom, S. C., and Hengstler, J. G. (2006) Present status and perspectives of cell-based therapies for liver diseases. J Hepatol 45, 144–159

    Article  CAS  PubMed  Google Scholar 

  252. Rhim, J. A., Sandgren, E. P., Degen, J. L., Palmiter, R. D., and Brinster, R. L. (1994) Replacement of diseased mouse liver by hepatic cell transplantation. Science NY 263, 1149–1152

    CAS  Google Scholar 

  253. Overturf, K., al-Dhalimy, M., Ou, C. N., Finegold, M., and Grompe, M. (1997) Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am J Pathol 151, 1273–1280

    CAS  PubMed  Google Scholar 

  254. Michalopoulos, G. K., Barua, L., and Bowen, W. C. (2005) Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 41, 535–544

    Article  CAS  PubMed  Google Scholar 

  255. Koenig, S., Krause, P., Drabent, B., Schaeffner, I., Christ, B., Schwartz, P., Unthan-Fechner, K., and Probst, I. (2006) The expression of mesenchymal, neural and haematopoietic stem cell markers in adult hepatocytes proliferating in vitro. J Hepatol 44, 1115–1124

    Article  CAS  PubMed  Google Scholar 

  256. Evarts, R. P., Nagy, P., Marsden, E., and Thorgeirsson, S. S. (1987) A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis 8, 1737–1740

    Article  CAS  PubMed  Google Scholar 

  257. Evarts, R. P., Nagy, P., Nakatsukasa, H., Marsden, E., and Thorgeirsson, S. S. (1989) In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res 49, 1541–1547

    CAS  PubMed  Google Scholar 

  258. Fujio, K., Evarts, R. P., Hu, Z., Marsden, E. R., and Thorgeirsson, S. S. (1994) Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Lab Invest 70, 511–516

    CAS  PubMed  Google Scholar 

  259. Nierhoff, D., Ogawa, A., Oertel, M., Chen, Y. Q., and Shafritz, D. A. (2005) Purification and characterization of mouse fetal liver epithelial cells with high in vivo repopulation capacity. Hepatology 42, 130–139

    Article  PubMed  Google Scholar 

  260. Song, S., Witek, R. P., Lu, Y., Choi, Y. K., Zheng, D., Jorgensen, M., Li, C., Flotte, T. R., and Petersen, B. E. (2004) Ex vivo transduced liver progenitor cells as a platform for gene therapy in mice. Hepatology 40, 918–924

    CAS  PubMed  Google Scholar 

  261. Herrera, M. B., Bruno, S., Buttiglieri, S., Tetta, C., Gatti, S., Deregibus, M. C., Bussolati, B., and Camussi, G. (2006) Isolation and Characterization of a Stem Cell Population from Adult Human Liver. Stem cells (Dayton, Ohio ) 24, 2840–2850

    Google Scholar 

  262. Robertson, R. P. (2004) Islet transplantation as a treatment for diabetes – a work in progress. N Engl J Med 350, 694–705

    Article  CAS  PubMed  Google Scholar 

  263. Bonner-Weir, S., and Weir, G. C. (2005) New sources of pancreatic beta-cells. Nat Biotechnol 23, 857–861

    Article  CAS  PubMed  Google Scholar 

  264. Dor, Y., Brown, J., Martinez, O. I., and Melton, D. A. (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46

    Article  CAS  PubMed  Google Scholar 

  265. Bonner-Weir, S., Baxter, L. A., Schuppin, G. T., and Smith, F. E. (1993) A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 42, 1715–1720

    Article  CAS  PubMed  Google Scholar 

  266. Zulewski, H., Abraham, E. J., Gerlach, M. J., Daniel, P. B., Moritz, W., Muller, B., Vallejo, M., Thomas, M. K., and Habener, J. F. (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50, 521–533

    Article  CAS  PubMed  Google Scholar 

  267. Seaberg, R. M., Smukler, S. R., Kieffer, T. J., Enikolopov, G., Asghar, Z., Wheeler, M. B., Korbutt, G., and van der Kooy, D. (2004) Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 22, 1115–1124

    Article  CAS  PubMed  Google Scholar 

  268. Bonner-Weir, S., Toschi, E., Inada, A., Reitz, P., Fonseca, S. Y., Aye, T., and Sharma, A. (2004) The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes 5 Suppl 2, 16–22

    Article  PubMed  Google Scholar 

  269. Baeyens, L., De Breuck, S., Lardon, J., Mfopou, J. K., Rooman, I., and Bouwens, L. (2005) In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 48, 49–57

    Article  CAS  PubMed  Google Scholar 

  270. Rajagopal, J., Anderson, W. J., Kume, S., Martinez, O. I., and Melton, D. A. (2003) Insulin staining of ES cell progeny from insulin uptake. Science NY 299, 363

    Google Scholar 

  271. Baharvand, H., Jafary, H., Massumi, M., and Ashtiani, S. K. (2006) Generation of insulin-secreting cells from human embryonic stem cells. Dev Growth Differ 48, 323–332

    Article  CAS  PubMed  Google Scholar 

  272. Lavon, N., Yanuka, O., and Benvenisty, N. (2006) The effect of overexpression of Pdx1 and Foxa2 on the differentiation of human embryonic stem cells into pancreatic cells. Stem cells (Dayton, Ohio) 24, 1923–1930

    Article  CAS  Google Scholar 

  273. Zalzman, M., Gupta, S., Giri, R. K., Berkovich, I., Sappal, B. S., Karnieli, O., Zern, M. A., Fleischer, N., and Efrat, S. (2003) Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc Natl Acad Sci USA 100, 7253–7258

    Google Scholar 

  274. Yang, L. J. (2006) Liver stem cell-derived beta-cell surrogates for treatment of type 1 diabetes. Autoimmun Rev 5, 409–413

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Riazi, A.M., Kwon, S.Y., Stanford, W.L. (2009). Stem Cell Sources for Regenerative Medicine. In: Audet, J., Stanford, W.L. (eds) Stem Cells in Regenerative Medicine. Methods in Molecular Biology, vol 482. Humana Press. https://doi.org/10.1007/978-1-59745-060-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-060-7_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-797-6

  • Online ISBN: 978-1-59745-060-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics