Skip to main content

Comparative Genomics

A Tool to Functionally Annotate Human DNA

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 366))

Abstract

The availability of an increasing number of vertebrate genomes has enabled comparative methods to infer functional sequences based on evolutionary constraint. Although this has proved powerful for gene identification, significant progress has also been made in uncovering gene regulatory sequences such as distant acting transcriptional enhancers. These pursuits have led to the development of a variety of valuable databases and resources that should serve as a routine toolbox for biological discovery.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. International Human Genome Sequencing Consortium. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  Google Scholar 

  2. Pennisi, E. (2003) Human genome. Reaching their goal early, sequencing labs celebrate. Science 300, 409.

    Article  CAS  PubMed  Google Scholar 

  3. Frazer, K. A., Elnitski, L., Church, D. M., Dubchak, I., and Hardison, R. C. (2003) Cross-species sequence comparisons: a review of methods and available resources. Genome Res. 13, 1–12.

    Article  CAS  PubMed  Google Scholar 

  4. Hardison, R. C. (2003) Comparative genomics. PLoS Biol. 1, 156–160.

    Article  CAS  Google Scholar 

  5. Pennacchio, L. A. and Rubin, E. M. (2003) Comparative genomic tools and databases: providing insights into the human genome. J. Clin. Invest. 111, 1099–1106.

    CAS  PubMed  Google Scholar 

  6. Batzoglou, S., Pachter, L., Mesirov, J. P., Berger, B., and Lander, E. S. (2000) Human and mouse gene structure: comparative analysis and application to exon prediction. Genome Res. 10, 950–958.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, R., Bouck, J. B., Weinstock, G. M., and Gibbs, R. A. (2001) Comparing vertebrate whole-genome shotgun reads to the human genome. Genome Res. 11, 1807–1816.

    CAS  PubMed  Google Scholar 

  8. Waterston, R. H. and International Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562.

    Article  CAS  PubMed  Google Scholar 

  9. Oeltjen, J. C., Malley, T. M., Muzny, D. M., Miller, W., Gibbs, R. A., and Belmont, J. W. (1997) Large-scale comparative sequence analysis of the human and murine Bruton’s tyrosine kinase loci reveals conserved regulatory domains. Genome Res. 7, 315–329.

    CAS  PubMed  Google Scholar 

  10. Loots, G. G., Locksley, R. M., Blankespoor, C. M., et al. (2000) Identification of a coordinate regulator of interleukins 4,13, and 5 by cross-species sequence comparisons. Science 288, 136–140.

    Article  CAS  PubMed  Google Scholar 

  11. Gottgens, B., Barton, L. M., Chapman, M. A., et al. (2002) Transcriptional regulation of the stem cell leukemia gene (SCL)—comparative analysis of five vertebrate SCL loci. Genome Res. 12, 749–759.

    Article  CAS  PubMed  Google Scholar 

  12. Dermitzakis, E. T., Reymond, A., Scamuffa, N., et al. (2003) Evolutionary discrimination of mammalian conserved non-genic sequences (CNGs). Science 302, 1033–1035.

    Article  CAS  PubMed  Google Scholar 

  13. Genome sequencing prioritization list of NIH/National Human Genome Research Institute (http://www.genome.gov/10002154).

  14. Genome assembly and annotation process (http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=handbook.chapter.chl4).

  15. Kent, W. J., Sugnet, C. W., Furey, T. S., et al. (2002) The Human Genome Browser at UCSC. Genome Res. 12, 996–1006.

    CAS  PubMed  Google Scholar 

  16. UC Santa Cruz Genome Browser (http://genome.ucsc.edu).

  17. Mayor, C., Brudno, M., Schwartz, J. R., et al. (2000) VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16, 1046–1047.

    Article  CAS  PubMed  Google Scholar 

  18. VISTA Genome Browser (http://pipeline.lbl.gov/).

  19. ECR Browser (http://ecrbrowser.dcode.org/).

  20. Schwartz, S., Kent, W. J., Smit, A., et al. (2003) Human-mouse alignments with BLASTZ. Genome Res. 13, 103–107.

    Article  CAS  PubMed  Google Scholar 

  21. Brudno, M., Do, C. B., Cooper, G. M., et al., and NISC Comparative Sequencing Program. (2003) LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res. 13, 721–731.

    Article  CAS  PubMed  Google Scholar 

  22. Bray, N., Dubchak, I., and Pachter, L. (2003) AVID: A global alignment program. Genome Res. 13, 97–102.

    Article  CAS  PubMed  Google Scholar 

  23. Pollard, D. A., Bergman, C. M., Stoye, J., Celniker, S. E., and Eisen, M. B. (2004) Benchmarking tools for the alignment of functional noncoding DNA. BMC Bioinformatics 5, 6.

    Article  PubMed  Google Scholar 

  24. Kent, W. J. (2002) BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664.

    CAS  PubMed  Google Scholar 

  25. NCBI BLAST website (http://www.ncbi.nlm.nih.gov/BLAST/).

  26. Search for sequences in the NCBI unassembled trace archive (http://www.ncbi.nlm.nih.gov/BLAST/tracemb.shtml).

  27. BAC library resources (http://bacpac.chori.org/).

  28. DOE/Joint Genome Institute’s Community Sequencing Program (http://www.jgi.doe.gov/CSP/index.html).

  29. NIH/NHGRI Genome Sequencing Program (http://www.genome.gov/10001691).

  30. Boffelli, D., McAuliffe, J., Ovcharenko, D., et al. (2003) Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299, 1391–1394.

    Article  CAS  PubMed  Google Scholar 

  31. Loots, G. G., Ovcharenko, L., Pachter, L., Dubchak, I., and Rubin, E. M. (2002) rVista for comparative sequence-based discovery of functional transcription factor binding sites. Genome Res. 12, 832–839.

    PubMed  Google Scholar 

  32. Schwartz, S., Zhang, Z., Frazer, K. A., et al. (2000) PipMaker—a web server for aligning two genomic DNA sequences. Genome Res. 10, 577–586.

    Article  CAS  PubMed  Google Scholar 

  33. PipMaker and MultiPipMaker (http://pipmaker.bx.psu.edu/pipmaker/).

  34. Schwartz, S., Elnitski, L., Li, M., et al., and NISC Comparative Sequencing Program. (2003) MultiPipMaker and supporting tools: alignments and analysis of multiple genomic DNA sequences. Nucleic Acids Res. 31, 3518–3524.

    Article  CAS  PubMed  Google Scholar 

  35. zPicture (http://zpicture.dcode.org).

  36. Rank VISTA (http://genome.lbl.gov/vista/rankVISTA.shtml).

  37. Bray, N. and Pachter, L. (2003) MAVID multiple alignment server. Nucleic Acids Res. 31, 3525–3526.

    Article  CAS  PubMed  Google Scholar 

  38. eShadow (http://eshadow.dcode.org/).

  39. Ovcharenko, I., Boffelli, D., and Loots, G. G. (2004) eShadow: a tool for comparing closely related sequences. Genome Res. 14, 1191–1198.

    Article  CAS  PubMed  Google Scholar 

  40. Jung, J., Zheng, M., Goldfarb, M., and Zaret, K. S. (1999) Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284, 1998–2003.

    Article  CAS  PubMed  Google Scholar 

  41. Fukuchi-Shimogori, T. and Grove, E. A. (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294, 1071–1074.

    Article  CAS  PubMed  Google Scholar 

  42. Storm, E. E., Rubenstein, J. L. R., and Martin, G. R. (2003) Dosage of Fgf8 determines whether cell survival is positively or negatively regulated in the developing forebrain. Proc. Nat. Acad. Sci. USA 100, 1757–1762.

    Article  CAS  PubMed  Google Scholar 

  43. Crossley, P. H., Minowada, G., MacArthur, C. A., and Martin, G. R. (1996) Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84, 127–136.

    Article  CAS  PubMed  Google Scholar 

  44. Lewandoski, M., Sun, X., and Martin, G. R. (2000) Fgf8 signalling from the AER is essential for normal limb development. Nat. Genet. 26, 460–463.

    Article  CAS  PubMed  Google Scholar 

  45. Sun, X., Mariani, F. V., and Martin, G. R. (2002) Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418, 501–508.

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka, A., Kamiakito, T., Takayashiki, N., Sakurai, S., and Saito, K. (2002) Fibroblast growth factor 8 expression in breast carcinoma: associations with androgen receptor and prostate-specific antigen expressions. VirchowsArch. 441, 380–384.

    Article  CAS  Google Scholar 

  47. multiVISTA or mVISTA server (http://genome.lbl.gov/vista/mvista/submit.shtml).

  48. Gemel, J., Jacobsen, C., and MacArthur, C. A. (1999) Fibroblast growth factor-8 expression is regulated by intronic engrailed and Pbxl-binding sites. J. Biol. Chem. 274, 6020–6026.

    Article  CAS  PubMed  Google Scholar 

  49. Brondani, V., Klimkait, T., Egly, J. M., and Hamy, F. (2002) Promoter of FGF8 reveals a unique regulation by unliganded RARalpha. J. Mol. Biol. 319, 715–728.

    Article  CAS  PubMed  Google Scholar 

  50. Gnanapragasam, V. J., Robson, C. N., Neal, D. E., and Leung, H. Y. (2002) Regulation of FGF8 expression by the androgen receptor in human prostate cancer. Oncogene 21, 5069–5080.

    Article  CAS  PubMed  Google Scholar 

  51. Walsh, A., Ito, Y., and Breslow, J. L. (1989) High levels of human apolipoprotein A-I in transgenic mice result in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3. J. Biol. Chem. 264, 6488–6494.

    CAS  PubMed  Google Scholar 

  52. Collins, F. S., Green, E. D., Guttmacher, A. E., and Guyer, M. S. (2003) A vision for the future of genomics research. Nature 422, 835–847.

    Article  CAS  PubMed  Google Scholar 

  53. Dickerson, R. E. and Geis, I. (1983) Hemoglobin: Structure, Function, Evolution, and Pathology. Benjamin/Cummings.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Cheng, JF., Priest, J.R., Pennacchio, L.A. (2007). Comparative Genomics. In: Zhang, J., Rokosh, G. (eds) Cardiac Gene Expression. Methods in Molecular Biology, vol 366. Humana Press. https://doi.org/10.1007/978-1-59745-030-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-030-0_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-352-7

  • Online ISBN: 978-1-59745-030-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics