Skip to main content

Sequencing of Tryptic Peptides Using Chemically Assisted Fragmentation and MALDI-PSD

  • Protocol

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has become the preferred method for high-throughput identification of proteins using peptide mass fingerprinting (PMF), due to its ease of automation, short analysis time, relatively high tolerance towards contaminants, high sensitivity, and mass accuracy (1). In this technique, proteins are typically separated by twodimensional (2-D) gel electrophoresis, enzymatically in-gel digested with trypsin, extracted from the gel, and analyzed by MALDI-TOF MS. The resulting peptide mass fingerprints are compared to theoretical fingerprints from a protein- or DNA-sequence database for identification. In comparison to other ionization techniques such as electrospray ionization (ESI), the soft ionization induced by MALDI predominantly generates singly charged ions, which allows for a relatively easy interpretation of acquired spectra. Unfortunately, identification is not always unambiguous for a substantial fraction of the peptides analyzed, and it is not unusual that only a few peptides are recovered from an in-gel digest, especially when the protein is poorly expressed. To further improve the protein identification rate, amino acid sequence information from tryptic peptides is necessary. However, it is a well known fact that direct sequencing using MALDI post-source decay (PSD) often results in poor and unpredictable fragmentation patterns, which are mostly impossible to interpret (2). Singly charged tryptic peptides, formed during MALDI ionization, do not fragment readily because there is not enough internal energy available to move the ionizing proton from the basic C-terminal to the peptide backbone to induce fragmentation. In ESI, this problem is easily avoided by selecting doubly protonated peptides, which fragment readily.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Shevchenko, A., Jensen, O. N., Podtelejnokov, A., et al. (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl. Acad. Sci. USA 93, 1440–1445.

    Article  Google Scholar 

  2. Spengler, B. (1997) Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules. J. Mass Spectrom. 32, 1019–1036.

    Article  CAS  Google Scholar 

  3. Keough, T., Lacey, M. P., and Youngquist, R. S. (1999) A method for high-sensitivity peptide sequencing using postsource decay matrix-assisted laser desorption ionization mass spectrometry. Proc. Natl. Acad. Sci. USA 96, 7131–7136.

    Article  PubMed  CAS  Google Scholar 

  4. Liminga, M., Carlsson, U., Larsson, C., et al. (2001) New water stable chemistry for improved amino acid sequencing by derivatization postsource-decay (dPSD) using Ettan MALDI-TOF with a quadratic field reflection. Proc. 49th ASMS Conf. Mass Spectrometry and Allied Topics, Chicago, IL.

    Google Scholar 

  5. Keough, T., Lacey, M. P., and Youngquist, R. S. (2002) Solid-phase derivatization of tryptic peptides for rapid protein identification by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 16, 1003–1015.

    Article  PubMed  CAS  Google Scholar 

  6. Hellman, U. and Bhikhabhai, R. (2002) Easy amino acid sequencing of sulfonated peptides using post-source decay on a matrix-assisted laser desorption/ionization time-of-flight spectrometer equipped with a variable voltage reflector. Rapid Commun. Mass Spectrom. 16, 1851–1859.

    Article  PubMed  CAS  Google Scholar 

  7. Flensburg, J. and Belew, M. (2003) Characterization of recombinant human serum albumin using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Chromatogr. A 1009, 111–117.

    Article  PubMed  CAS  Google Scholar 

  8. Eklund, P., Andersson, H. O., Kamali-Moghaddam, M., Sundstr/:om, L., and Flensburg, J. (2003) Purification and partial characterization by matrix-assisted laser desorption ionization time-of-flight mass spectrometry of the recombinant transposase, TniA. J. Chromatogr. A 1009, 179–188.

    Article  PubMed  CAS  Google Scholar 

  9. Keough, T., Lacey, M. P., and Youngquist, R. S. (2000) Derivatization procedures to facilitate de novo sequencing of lysine-terminated tryptic peptides using postsource decay matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 14, 2348–2356.

    Article  PubMed  CAS  Google Scholar 

  10. Wysocki, V. H., Tsaprailis, G., Smith, L. L., and Breci, L. A. (2000) Mobile and localized protons: a framework for understanding peppide dissociation. J. Mass Spectrom. 35, 1399–1406.

    Article  PubMed  CAS  Google Scholar 

  11. Flensburg, J., Haid, D., Blomberg, J., Bielawski, J., and Ivansson, D. (2004) Applications and performance of a MALDI-TOF mass spectrometer with quadratic field reflectron technology. J. Biochemical and Biophysical Methods 60, 319–334.

    Article  CAS  Google Scholar 

  12. Anderson, U. N., Colburn, A. W., Makarov, A. A., et al. (1998) In-series combination of a magnetic-sector mass spectrometer with a time-of-flight quadratic-field ion mirror. Rev. Sci. Instrum. 69, 1650–1660.

    Article  Google Scholar 

  13. Zhang, W. and Chait, B. T. (2000) ProFound: An expert system for protein identification using mass spectrometric peppide mapping information. Anal. Chem. 72, 2482–2489.

    Article  PubMed  CAS  Google Scholar 

  14. Field, H. I., Fenyö, D., and Beavis, R. C. (2002) RADARS, a bioinformatics solution that automates proteome mass spectral analysis, oppimises protein identification, and archives data in a relational database. Proteomics 2, 36–47.

    Article  PubMed  CAS  Google Scholar 

  15. Bell, P. J. L. and Karuso, P. (2003) Epicocconone, a novel fluorescent compound from the fungus Epicoccum nigrum. J. Am. Chem. Soc. 125, 9304–9305.

    Article  CAS  Google Scholar 

  16. Mackintosh, J. A., Choi, H., Bae, S., et al. (2003) A fluorescent natural product for ultra sensitive detection of proteins in 1-D and 2-D gel electrophoresis. Proteomics 3, 2273–2288.

    Article  PubMed  CAS  Google Scholar 

  17. The Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Google Scholar 

  18. The Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  19. Aebersold, R. and Goodlett, D. R. (2001) Mass spectrometry in proteomics. Chem. Rev. 101, 269–295.

    Article  PubMed  CAS  Google Scholar 

  20. Hoffmann, R., Metzger, S., Spengler, B., and Otvos, L. (1999) Sequencing of peppides phosphorylated on serines and threonines by post-source decay in matrix-assisted laser desorppion/ionization time-of-flight mass spectrometry. J. Mass Spectrom. 34, 1195–1204.

    Article  PubMed  CAS  Google Scholar 

  21. Metzger, S. and Hoffmann, R. (2000) Studies on the dephosphorylation of phosphotyrosine-containing peppides during post-source decay in matrix-assisted laser desorppion/ ionization. J. Mass Spectrom. 35, 1165–1177.

    Article  PubMed  CAS  Google Scholar 

  22. Qin, J. and Chait, B. T. (1997) Identification and characterization of post translational modification of proteins by MALDI ion trap mass spectroscopy. Anal. Chem. 69, 4002–4009.

    Article  PubMed  CAS  Google Scholar 

  23. Bhikhabhai, R., Algotsson, M., Carlsson, U., et al. (2004) Amino acid sequencing of sulfonic acid-labeled tryptic peptides using post-source decay and quadratic field MALDIToF mass spectrometry. In Kamp, R. M., Calvete, J. J., and Choli-Papadopoulou, T. (eds.), Principles and Practice, Methods in Proteome and Protein Analysis Springer-Verlag, Berlin, Heidelberg, pp. 279–296.

    Google Scholar 

  24. Keough, T., Youngquist, R. S., and Lacey, M. P. (2003) Sulfonic acid derivatives for peppide sequencing by MALDI MS. Anal. Chem. 75(7), 156A–165A.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Flensburg, J., Liminga, M. (2005). Sequencing of Tryptic Peptides Using Chemically Assisted Fragmentation and MALDI-PSD. In: Walker, J.M. (eds) The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-59259-890-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-890-8_33

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-343-5

  • Online ISBN: 978-1-59259-890-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics