Skip to main content

Semiconductor Quantum Dots for Visualization and Sensing in Neuronal Cell Systems

  • Protocol
  • First Online:
Basic Neurobiology Techniques

Part of the book series: Neuromethods ((NM,volume 152))

Abstract

Fluorescence imaging continues to play an increasingly vital role in neurobiology from the use of organic fluorophore dyes to genetically encoded proteins. Semiconductor nanocrystals or quantum dots have emerged as a new class of photostable fluorophores for use in a wide array of biological applications ranging from labeling and imaging to sensing and drug delivery. Here, we highlight several applications of quantum dots for imaging and sensing across a variety of neuronal cell platforms. These include the specific labeling of neurons tissue slices, the tracking of neuron movement in brain development, enhanced voltage sensing, and the guided patch clamp of neurons in vivo during electrophysiology. Our goal is to provide the reader with a survey of the use of quantum dots in these applications along with experimental notes and guidelines for their successful use in these applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Combs CA (2010) Fluorescence microscopy: a concise guide to current imaging methods. Curr Protoc Neurosci 50(1):2–1

    Google Scholar 

  2. Taraska JW, Zagotta WN (2010) Fluorescence applications in molecular neurobiology. Neuron 66(2):170–189

    Article  CAS  Google Scholar 

  3. Chen T-W et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  CAS  Google Scholar 

  4. Venkatachalam V, Cohen AE (2014) Imaging GFP-based reporters in neurons with multiwavelength optogenetic control. Biophys J 107(7):1554–1563

    Article  CAS  Google Scholar 

  5. Nakajima R et al (2016) Optogenetic monitoring of synaptic activity with genetically encoded voltage indicators. Front Synaptic Neurosci 8:22

    Article  Google Scholar 

  6. Hochbaum DR et al (2014) All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 11(8):825–833

    Article  CAS  Google Scholar 

  7. Boeneman K et al (2009) Sensing caspase 3 activity with quantum dot−fluorescent protein assemblies. J Am Chem Soc 131(11):3828–3829

    Article  CAS  Google Scholar 

  8. Delehanty JB et al (2013) Site-specific cellular delivery of quantum dots with chemoselectively-assembled modular peptides. Chem Commun (Camb) 49(72):7878–7880

    Article  CAS  Google Scholar 

  9. Delehanty JB et al (2010) Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system. Integr Biol 2(5–6):265–277

    Article  CAS  Google Scholar 

  10. Delehanty JB et al (2011) Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques. J Am Chem Soc 133(27):10482–10489

    Article  CAS  Google Scholar 

  11. Field L et al (2015) Modulation of intracellular quantum dot to fluorescent protein Förster resonance energy transfer via customized ligands and spatial control of donor–acceptor assembly. Sensors 15(12):29810

    Article  Google Scholar 

  12. Medintz IL et al (2008) Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. Bioconjug Chem 19:1785–1795

    Article  CAS  Google Scholar 

  13. Walters R et al (2012) Nanoparticle targeting to neurons in a rat hippocampal slice culture model. ASN Neuro 4(6):383–392

    Article  CAS  Google Scholar 

  14. Walters R et al (2015) The role of negative charge in the delivery of quantum dots to neurons. ASN Neuro 7(4):1–12

    Article  CAS  Google Scholar 

  15. Agarwal R et al (2015) Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain. ACS Chem Nerosci 6(3):494–504

    Article  CAS  Google Scholar 

  16. Clapp AR, Goldman ER, Mattoussi H (2006) Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins. Nat Protoc 1(3):1258–1266

    Article  CAS  Google Scholar 

  17. Snee PT et al (2005) Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite. Adv Mater 17:1131

    Article  Google Scholar 

  18. Li JJ et al (2003) Large-scale synthesis of nearly monodisperse CdSe/CdS Core/Shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc 125:12567

    Article  CAS  Google Scholar 

  19. Blackman B, Battaglia D, Peng XG (2008) Bright and water-soluble near Ir-emitting Cdse/Cdte/ZnSe type-II/type-I nanocrystals, tuning the efficiency and stability by growth. Chem Mater 20:4847

    Article  CAS  Google Scholar 

  20. Susumu K et al (2014) A new family of pyridine-appended multidentate polymers as hydrophilic surface ligands for preparing stable biocompatible quantum dots. Chem Mater 26(18):5327–5344

    Article  CAS  Google Scholar 

  21. Mei BC et al (2009) Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media. Nat Protoc 4:412–423

    Article  CAS  Google Scholar 

  22. Nag OK et al (2017) Quantum dot–peptide–fullerene bioconjugates for visualization of in vitro and in vivo cellular membrane potential. ACS Nano 11(6):5598–5613

    Article  CAS  Google Scholar 

  23. Delehanty JB et al (2013) Controlling the actuation of therapeutic nanomaterials: enabling nanoparticle-mediated drug delivery. Ther Deliv 4(11):1411–1429

    Article  CAS  Google Scholar 

  24. Prasuhn DE et al (2010) Polyvalent display and packing of peptides and proteins on semiconductor quantum dots: predicted versus experimental results. Small 6(4):555–564

    Article  CAS  Google Scholar 

  25. Field LD et al (2015) Modulation of intracellular quantum dot to fluorescent protein Forster resonance energy transfer via customized ligands and spatial control of donor-acceptor assembly. Sensors 15(12):30457–30468

    Article  CAS  Google Scholar 

  26. Stewart MH et al (2010) Multidentate poly(ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions. J Am Chem Soc 132:9804–9813

    Article  CAS  Google Scholar 

  27. Clapp AR et al (2007) Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications. Adv Mater 19:1921

    Article  CAS  Google Scholar 

  28. Resch-Genger U et al (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775

    Article  CAS  Google Scholar 

  29. Margrie TW et al (2003) Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39(6):911–918

    Article  CAS  Google Scholar 

  30. Komai S et al (2006) Two-photon targeted patching (TPTP) in vivo. Nat Protoc 1(2):647–652

    Article  CAS  Google Scholar 

  31. Kitamura K et al (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5(1):61–67

    Article  CAS  Google Scholar 

  32. Weiss PS (2013) President Obama announces the BRAIN initiative. ACS Nano 7(4):2873–2874

    Article  CAS  Google Scholar 

  33. Tsytsarev V et al (2008) Imaging cortical electrical stimulation in vivo: fast intrinsic optical signal versus voltage-sensitive dyes. Opt Lett 33(9):1032–1034

    Article  CAS  Google Scholar 

  34. Delehanty JB, Mattoussi H, Medintz IL (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393(4):1091–1105

    Article  CAS  Google Scholar 

  35. Breger J, Delehanty JB, Medintz IL (2015) Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(2):131–151

    Article  CAS  Google Scholar 

  36. Delehanty JB et al (2009) Quantum dots: a powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery. Expert Opin Drug Deliv 6:1091–1112

    Article  CAS  Google Scholar 

  37. Andrasfalvy BK et al (2014) Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology. Nat Methods 11(12):1237–1241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from the NRL Nanoscience Institute and Base Funding Program. LDF is a PhD candidate in the Fischell Department of Bioengineering, University of Maryland, MD, USA. YC was supported by a postdoctoral research associateship through the American Association for Engineering Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Delehanty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Field, L.D., Chen, Y.C., Delehanty, J.B. (2020). Semiconductor Quantum Dots for Visualization and Sensing in Neuronal Cell Systems. In: Wright, N. (eds) Basic Neurobiology Techniques . Neuromethods, vol 152. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9944-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9944-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9943-9

  • Online ISBN: 978-1-4939-9944-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics