Skip to main content

Generation of High-Affinity Molecularly Imprinted Nanoparticles for Protein Recognition via a Solid-Phase Synthesis Protocol

  • Protocol
  • First Online:
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2073))

Abstract

Molecularly imprinted polymers are leading technology in the development of protein biomimetics. This chapter describes the protocol for the synthesis of protein imprinted nanoparticles. These materials exhibit exceptional affinity (into the nM/pM range) and selectivity for their target template. The nanoparticles can be developed for a wide range of targets, while exhibiting excellent robustness, solubility, and flexibility in use. They are finding use in the creation of drug delivery vectors and sensing and recognition assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Czyzewski AM, Barron AE (2008) Protein and peptide biomimicry: gold-mining inspiration from nature’s ingenuity. AICHE J 54(1):2–8

    Article  CAS  Google Scholar 

  2. Nagpal K, Mohan A, Thakur S, Kumar P (2018) Dendritic platforms for biomimicry and biotechnological applications. Artif Cells Nanomed Biotechnol 46:861–875

    Article  CAS  PubMed  Google Scholar 

  3. Webber MJ, Appel EA, Meijer EW, Langer R (2015) Supramolecular biomaterials. Nat Mater 15:13

    Article  CAS  Google Scholar 

  4. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe M (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19(2):106–180

    Article  CAS  PubMed  Google Scholar 

  5. Whitcombe MJ, Kirsch N, Nicholls IA (2014) Molecular imprinting science and technology: a survey of the literature for the years 2004–2011. J Mol Recognit 27(6):297–401

    Article  CAS  PubMed  Google Scholar 

  6. Nicholls IA (1995) Thermodynamic considerations for the design of and ligand recognition by molecularly imprinted polymers. Chem Lett 24:1035–1036

    Article  Google Scholar 

  7. Nicholls IA, Andersson HS, Charlton C, Henschel H, Karlsson BCG, Karlsson JG, O’Mahony J, Rosengren AM, Rosengren KJ, Wikman S (2009) Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosens Bioelectron 25(3):543–542

    Article  CAS  PubMed  Google Scholar 

  8. Chianella I, Lotierzo M, Piletsky SA, Tothill IE, Chen B, Karim K, Turner APF (2002) Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem 74(6):1288–1293

    Article  CAS  PubMed  Google Scholar 

  9. Jalink T, Farrand T, Herdes C (2016) Towards EMIC rational design: setting the molecular simulation toolbox for enantiopure molecularly imprinted catalysts. Chem Cent J 10(1):66

    Article  PubMed  PubMed Central  Google Scholar 

  10. Piletsky SA, Piletska EV, Karim K, Freebairn KW, Legge CH, Turner APF (2002) Polymer cookery: influence of polymerization conditions on the performance of molecularly imprinted polymers. Macromolecules 35:7499–7504

    Article  CAS  Google Scholar 

  11. Piletsky SA, Guerreiro A, Piletska EV, Chianella I, Karim K, Turner APF (2004) Polymer cookery. 2. Influence of polymerization pressure and polymer swelling on the performance of molecularly imprinted polymers. Macromolecules 37:5018–5022

    Article  CAS  Google Scholar 

  12. Piletsky SA, Mijangos I, Guerreiro A, Piletska EV, Chianella I, Karim K, Turner APF (2005) Polymer cookery 3: influence of polymerization time and different initiation conditions on performance of molecularly imprinted polymers. Macromolecules 38:1410–1414

    Article  CAS  Google Scholar 

  13. Wackerlig J, Lieberzeit PA (2015) Molecularly imprinted polymer nanoparticles in chemical sensing – synthesis, characterisation and application. Sensors Actuators B Chem 207:144–157

    Article  CAS  Google Scholar 

  14. Boysen RI, Schwarz LJ, Nicolau DV, Hearn MTW (2017) Molecularly imprinted polymer membranes and thin films for the separation and sensing of biomacromolecules. J Sep Sci 40(1):314–335

    Article  CAS  PubMed  Google Scholar 

  15. Turner NW, Jeans CW, Brain KR, Allender CJ, Hlady VH, Britt DW (2006) From 3D to 2D: a review of the molecular imprinting of proteins. Biotechnol Prog 22:1474–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eersels K, Lieberzeit P, Wagner P (2016) A review on synthetic receptors for bioparticle detection created by surface-imprinting techniques—from principles to applications. ACS Sensors 1(10):1171–1187

    Article  CAS  Google Scholar 

  17. Wackerlig J, Schirhagl R (2016) Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Anal Chem 88(1):250–261

    Article  CAS  PubMed  Google Scholar 

  18. Dai H, Xiao D, He H, Li H, Yuan D, Zhang C (2015) Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review. Microchim Acta 182(5):893–908

    Article  CAS  Google Scholar 

  19. Garcia Y, Smolinska-Kempisty K, Pereira E, Piletska E, Piletsky S (2017) Development of competitive ‘pseudo’-ELISA assay for measurement of cocaine and its metabolites using molecularly imprinted polymer nanoparticles. Anal Methods 9(31):4592–4598

    Article  CAS  Google Scholar 

  20. Korposh S, Chianella I, Guerreiro A, Caygill S, Piletsky S, James SW, Tatam RP (2014) Selective vancomycin detection using optical fibre long period gratings functionalised with molecularly imprinted polymer nanoparticles. Analyst 139(9):2229–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Canfarotta F, Rapini R, Piletsky S (2018) Recent advances in electrochemical sensors based on chiral and nano-sized imprinted polymers. Curr Opin Electrochem 7:146–152

    Article  CAS  Google Scholar 

  22. Smolinska-Kempisty K, Guerreiro A, Canfarotta F, Cáceres C, Whitcombe MJ, Piletsky S (2016) A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format. Sci Rep 6:37638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Canfarotta F, Whitcombe MJ, Piletsky SA (2013) Polymeric nanoparticles for optical sensing. Biotechnol Adv 31(8):1585–1599

    Article  CAS  PubMed  Google Scholar 

  24. Cecchini A, Raffa V, Canfarotta F, Signore G, Piletsky S, MacDonald MP, Cuschieri A (2017) In vivo recognition of human vascular endothelial growth factor by molecularly imprinted polymers. Nano Lett 17(4):2307–2312

    Article  CAS  PubMed  Google Scholar 

  25. Gagliardi M, Mazzolai B (2015) Molecularly imprinted polymeric micro- and nano-particles for the targeted delivery of active molecules. Future Med Chem 7(2):123–138

    Article  CAS  PubMed  Google Scholar 

  26. Piletsky SA, Piletska E, Canfarotta F, Karim K, Jones D, Norman R, Guerreiro A (2017) Methods and kits for determining binding sites. GB Patent GB1704823.2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas W. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Canfarotta, F., Piletsky, S.A., Turner, N.W. (2020). Generation of High-Affinity Molecularly Imprinted Nanoparticles for Protein Recognition via a Solid-Phase Synthesis Protocol. In: Gerrard, J., Domigan, L. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 2073. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9869-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9869-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9868-5

  • Online ISBN: 978-1-4939-9869-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics