Skip to main content

Detection of Microsatellite Instability Biomarkers via Next-Generation Sequencing

  • Protocol
  • First Online:
Biomarkers for Immunotherapy of Cancer

Abstract

A high level of microsatellite instability (MSI-H+) is an emerging predictive and prognostic biomarker for immunotherapy response in cancer. Recently, MSI-H+ has been detected in a variety of cancer types, in addition to the classical cancers associated with Lynch Syndrome. Clinical testing for MSI-H+ is currently performed primarily through traditional polymerase chain reaction (PCR) or immunohistochemistry (IHC) assays. However, next-generation sequencing (NGS)–based approaches have been developed which have multiple advantages over traditional assays. For instance, NGS has the ability to interrogate thousands of microsatellite loci compared with just 5–7 loci that are detected by PCR. In this chapter, we detail the biochemical and computational steps to detect MSI-H+ from analysis of paired tumor and normal samples through NGS. We begin with DNA extraction, describe sequencing library preparation and quality control (QC), and outline the bioinformatics steps necessary for sequence alignment, preprocessing, and MSI-H+ detection using the software tool MANTIS. This workflow is intended to facilitate more widespread usage and adaptation of NGS-powered MSI detection, which can be eventually standardized for routine clinical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355

    Article  CAS  Google Scholar 

  2. Dudley JC, Lin MT, Le DT, Eshleman JR (2016) Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res 22(4):813–820

    Article  CAS  Google Scholar 

  3. Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM et al (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5(1):43–51

    Article  CAS  Google Scholar 

  4. Baudrin LG, Deleuze JF, How-Kit A (2018) Molecular and computational methods for the detection of microsatellite instability in cancer. Front Oncol 8:621

    Article  Google Scholar 

  5. Hempelmann JA, Scroggins SM, Pritchard CC, Salipante SJ (2015) MSIplus for integrated colorectal cancer molecular testing by next-generation sequencing. J Mol Diagn 17(6):705–714

    Article  CAS  Google Scholar 

  6. Pritchard CC, Smith C, Salipante SJ, Lee MK, Thornton AM, Nord AS et al (2012) ColoSeq provides comprehensive Lynch and polyposis syndrome mutational analysis using massively parallel sequencing. J Mol Diagn 14(4):357–366

    Article  CAS  Google Scholar 

  7. Salipante SJ, Scroggins SM, Hampel HL, Turner EH, Pritchard CC (2014) Microsatellite instability detection by next generation sequencing. Clin Chem 60(9):1192–1199

    Article  CAS  Google Scholar 

  8. Middha S, Zhang L, Nafa K, Jayakumaran G, Wong D, Kim HR et al (2017) Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data. JCO Precis Oncol 2017(1):1–17

    Google Scholar 

  9. Hause RJ, Pritchard CC, Shendure J, Salipante SJ (2016) Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 22(11):1342–1350

    Article  CAS  Google Scholar 

  10. Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen H-Z et al (2017) Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol 2017(1):1–15

    Google Scholar 

  11. Kautto EA, Bonneville R, Miya J, Yu L, Krook MA, Reeser JW et al (2017) Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget 8(5):7452–7463

    Article  Google Scholar 

  12. Lu Y, Soong TD, Elemento O (2013) A novel approach for characterizing microsatellite instability in cancer cells. PLoS One 8(5):e63056

    Article  CAS  Google Scholar 

  13. Huang MN, McPherson JR, Cutcutache I, Teh BT, Tan P, Rozen SG (2015) MSIseq: software for assessing microsatellite instability from catalogs of somatic mutations. Sci Rep 5:13321

    Article  CAS  Google Scholar 

  14. Nowak JA, Yurgelun MB, Bruce JL, Rojas-Rudilla V, Hall DL, Shivdasani P et al (2017) Detection of mismatch repair deficiency and microsatellite instability in colorectal adenocarcinoma by targeted next-generation sequencing. J Mol Diagn 19(1):84–91

    Article  CAS  Google Scholar 

  15. Zhu L, Huang Y, Fang X, Liu C, Deng W, Zhong C et al (2018) A novel and reliable method to detect microsatellite instability in colorectal cancer by next-generation sequencing. J Mol Diagn 20(2):225–231

    Article  CAS  Google Scholar 

  16. Cortes-Ciriano I, Lee S, Park WY, Kim TM, Park PJ (2017) A molecular portrait of microsatellite instability across multiple cancers. Nat Commun 8:15180

    Article  CAS  Google Scholar 

  17. Andrews S, Babraham Institute. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  18. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  Google Scholar 

  19. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842

    Article  CAS  Google Scholar 

  20. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  Google Scholar 

  21. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  Google Scholar 

  22. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  Google Scholar 

  23. Database of Single Nucleotide Polymorphisms (dbSNP). National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD. http://www.ncbi.nlm.nih.gov/SNP/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameek Roychowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bonneville, R. et al. (2020). Detection of Microsatellite Instability Biomarkers via Next-Generation Sequencing. In: Thurin, M., Cesano, A., Marincola, F. (eds) Biomarkers for Immunotherapy of Cancer. Methods in Molecular Biology, vol 2055. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9773-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9773-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9772-5

  • Online ISBN: 978-1-4939-9773-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics