Skip to main content

RNA Sequencing Best Practices: Experimental Protocol and Data Analysis

  • Protocol
  • First Online:
Book cover Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2049))

Abstract

The genome-wide analysis of gene transcription using RNA sequencing (RNA-seq) has become the method of choice for characterizing and understanding transcriptional regulation in yeasts. RNA-seq has largely supplanted microarray based approaches in recent years due to improved accuracy and flexibility in the high-throughput identification and quantification of transcripts. The improvements associated with a sequencing approach compared to one based on hybridization, however, are accompanied by new experimental considerations related to both the collection and the analysis of the transcriptome data. Consensus approaches for processing and analysing the RNA-seq data in particular have yet to be arrived at, and it is possible to feel overwhelmed when surveying all the software tools that have been developed and recommended for these tasks. This chapter considers these issues in the context of providing general guidelines to help achieve best practice in yeast RNA-seq studies, and recommends a small number of the best performing tools that are currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  Google Scholar 

  2. Hrdlickova R, Toloue M, Tian B (2017) RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 8. https://doi.org/10.1002/wrna.1364

  3. Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29

    Article  Google Scholar 

  4. Schurch NJ, Schofield P, Gierliński M, Cole C, Sherstnev A, Singh V et al (2016) How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 22:839–851

    Article  CAS  Google Scholar 

  5. Tsuzuki M, Watanabe Y (2017) Profiling new small RNA sequences. Methods Mol Biol 1456:177–188

    Article  CAS  Google Scholar 

  6. Reynoso MA, Juntawong P, Lancia M, Blanco FA, Bailey-Serres J, Zanetti MEE (2015) Translating ribosome affinity purification (TRAP) followed by RNA sequencing technology (TRAP-SEQ) for quantitative assessment of plant translatomes. Methods Mol Biol 1284:185–207

    Article  CAS  Google Scholar 

  7. Martinez-Nunez RT, Sanford JR (2016) Studying isoform-specific mRNA recruitment to polyribosomes with Frac-seq. Methods Mol Biol 1358:99–108

    Article  CAS  Google Scholar 

  8. McGlincy NJ, Ingolia NT (2017) Transcriptome-wide measurement of translation by ribosome profiling. Methods 126:112–129

    Article  Google Scholar 

  9. Duncan C, Mata J (2017) Ribosome profiling for the analysis of translation during yeast meiosis. Methods Mol Biol 1471:99–122

    Article  CAS  Google Scholar 

  10. Hart SN, Therneau TM, Zhang Y, Poland GA, Kocher J-PP (2013) Calculating sample size estimates for RNA sequencing data. J Comput Biol 20:970–978

    Article  CAS  Google Scholar 

  11. Busby MA, Stewart C, Miller CA, Grzeda KR, Marth GT (2013) Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics 29:656–657

    Article  CAS  Google Scholar 

  12. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  Google Scholar 

  13. Yu L, Fernandez S, Brock G (2017) Power analysis for RNA-Seq differential expression studies. BMC Bioinformatics 18:234

    Article  Google Scholar 

  14. Ching T, Huang S, Garmire LX (2014) Power analysis and sample size estimation for RNA-Seq differential expression. RNA 20:1684–1696

    Article  CAS  Google Scholar 

  15. Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048

    Article  CAS  Google Scholar 

  16. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  Google Scholar 

  17. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  Google Scholar 

  18. Liao Y, Smyth GK, Shi W (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 41:e108

    Article  Google Scholar 

  19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  20. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  Google Scholar 

  21. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    Article  Google Scholar 

  22. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  Google Scholar 

  23. Liu Y, Zhou J, White KP (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30:301–304

    Article  CAS  Google Scholar 

  24. Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N et al (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 7:709–715

    Article  CAS  Google Scholar 

  25. Williams CR, Baccarella A, Parrish JZ, Kim CC (2016) Trimming of sequence reads alters RNA-Seq gene expression estimates. BMC Bioinformatics 17:103

    Article  Google Scholar 

  26. Pertea M, Pertea GM, Antonescu CM, Chang T-CC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    Article  CAS  Google Scholar 

  27. Klepikova AV, Kasianov AS, Chesnokov MS, Lazarevich NL, Penin AA, Logacheva M (2017) Effect of method of deduplication on estimation of differential gene expression using RNA-seq. PeerJ 5:e3091

    Article  Google Scholar 

  28. Law CW, Alhamdoosh M, Su S, Smyth GK, Ritchie ME (2016) RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Res 5:1408

    Article  Google Scholar 

  29. Chen Y, Lun AT, Smyth GK (2016) From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res 5:1438

    PubMed  PubMed Central  Google Scholar 

  30. Lun AT, Chen Y, Smyth GK (2016) It’s DE-licious: a recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. Methods Mol Biol 1418:391–416

    Article  Google Scholar 

  31. Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS et al (2015) Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res 43:e97

    Article  Google Scholar 

  32. Nueda MJJ, Tarazona S, Conesa A (2014) Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics 30:2598–2602

    Article  CAS  Google Scholar 

  33. Conesa A, Nueda MJJ, Ferrer A, Talón M (2006) maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22:1096–1102

    Article  CAS  Google Scholar 

  34. Spies D, Renz PF, Beyer TA, Ciaudo C (2019) Comparative analysis of differential gene expression tools for RNA sequencing time course data. Brief Bioinformatics 20(1):288–298

    Article  Google Scholar 

  35. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  Google Scholar 

  36. Wang X, Cairns MJ (2014) SeqGSEA: a Bioconductor package for gene set enrichment analysis of RNA-Seq data integrating differential expression and splicing. Bioinformatics 30:1777–1779

    Article  CAS  Google Scholar 

  37. Alhamdoosh M, Ng M, Wilson NJ, Sheridan JM, Huynh H, Wilson MJ et al (2017) Combining multiple tools outperforms individual methods in gene set enrichment analyses. Bioinformatics 33:414–424

    CAS  PubMed  Google Scholar 

  38. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D et al (2014) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  Google Scholar 

  39. Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  Google Scholar 

  40. Love MI, Anders S, Kim V, Huber W (2015) RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000Res 4:1070

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Hesketh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hesketh, A.R. (2019). RNA Sequencing Best Practices: Experimental Protocol and Data Analysis. In: Oliver, S.G., Castrillo, J.I. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 2049. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9736-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9736-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9735-0

  • Online ISBN: 978-1-4939-9736-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics