Skip to main content

ATP Measurement in Cerebrospinal Fluid Using a Microplate Reader

  • Protocol
  • First Online:
Purinergic Signaling

Abstract

Imbalance in extracellular ATP levels in brain tissue has been suggested as a triggering factor for several neurological disorders. Here, we describe the most sensitive and reliable technique for monitoring the ATP levels in mice cerebrospinal samples collected by cisterna magna puncture technique and quantified using a microplate reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430. https://doi.org/10.1007/s11302-006-9003-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7(7):575–590. https://doi.org/10.1038/nrd2605

    Article  CAS  PubMed  Google Scholar 

  4. Diaz-Hernandez M, Diez-Zaera M, Sanchez-Nogueiro J, Gomez-Villafuertes R, Canals JM, Alberch J, Miras-Portugal MT, Lucas JJ (2009) Altered P2X7-receptor level and function in mouse models of Huntington’s disease and therapeutic efficacy of antagonist administration. FASEB J 23(6):1893–1906. https://doi.org/10.1096/fj.08-122275

    Article  CAS  PubMed  Google Scholar 

  5. Wang XH, Xie X, Luo XG, Shang H, He ZY (2017) Inhibiting purinergic P2X7 receptors with the antagonist brilliant blue G is neuroprotective in an intranigral lipopolysaccharide animal model of Parkinson’s disease. Mol Med Rep 15(2):768–776. https://doi.org/10.3892/mmr.2016.6070

    Article  CAS  PubMed  Google Scholar 

  6. Diaz-Hernandez JI, Gomez-Villafuertes R, Leon-Otegui M, Hontecillas-Prieto L, Del Puerto A, Trejo JL, Lucas JJ, Garrido JJ, Gualix J, Miras-Portugal MT, Diaz-Hernandez M (2012) In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer’s disease through GSK3beta and secretases. Neurobiol Aging 33(8):1816–1828. https://doi.org/10.1016/j.neurobiolaging.2011.09.040

    Article  CAS  PubMed  Google Scholar 

  7. Martin E, Amar M, Dalle C, Youssef I, Boucher C, Le Duigou C, Bruckner M, Prigent A, Sazdovitch V, Halle A, Kanellopoulos JM, Fontaine B, Delatour B, Delarasse C (2018) New role of P2X7 receptor in an Alzheimer’s disease mouse model. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0108-3

  8. Engel T, Gomez-Villafuertes R, Tanaka K, Mesuret G, Sanz-Rodriguez A, Garcia-Huerta P, Miras-Portugal MT, Henshall DC, Diaz-Hernandez M (2012) Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB J 26(4):1616–1628. https://doi.org/10.1096/fj.11-196089

    Article  CAS  PubMed  Google Scholar 

  9. Sebastian-Serrano A, Engel T, de Diego-Garcia L, Olivos-Ore LA, Arribas-Blazquez M, Martinez-Frailes C, Perez-Diaz C, Millan JL, Artalejo AR, Miras-Portugal MT, Henshall DC, Diaz-Hernandez M (2016) Neurodevelopmental alterations and seizures developed by mouse model of infantile hypophosphatasia are associated with purinergic signalling deregulation. Hum Mol Genet 25(19):4143–4156. https://doi.org/10.1093/hmg/ddw248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Llaudet E, Hatz S, Droniou M, Dale N (2005) Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal Chem 77(10):3267–3273. https://doi.org/10.1021/ac048106q

    Article  CAS  PubMed  Google Scholar 

  11. Corriden R, Insel PA, Junger WG (2007) A novel method using fluorescence microscopy for real-time assessment of ATP release from individual cells. Am J Physiol Cell Physiol 293(4):C1420–C1425. https://doi.org/10.1152/ajpcell.00271.2007

    Article  CAS  PubMed  Google Scholar 

  12. Hayashi S, Hazama A, Dutta AK, Sabirov RZ, Okada Y (2004) Detecting ATP release by a biosensor method. Sci STKE 2004(258):pl14. https://doi.org/10.1126/stke.2582004pl14

    Article  PubMed  Google Scholar 

  13. Liu L, Duff K (2008) A technique for serial collection of cerebrospinal fluid from the cisterna magna in mouse. J Vis Exp (21). https://doi.org/10.3791/960

  14. Vanderstichele H, Demeyer L, Janelidze S, Coart E, Stoops E, Mauroo K, Herbst V, Francois C, Hansson O (2017) Recommendations for cerebrospinal fluid collection for the analysis by ELISA of neurogranin trunc P75, alpha-synuclein, and total tau in combination with Abeta(1-42)/Abeta(1-40). Alzheimers Res Ther 9(1):40. https://doi.org/10.1186/s13195-017-0265-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Czarnecka J, Cieslak M, Michal K (2005) Application of solid phase extraction and high-performance liquid chromatography to qualitative and quantitative analysis of nucleotides and nucleosides in human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci 822(1–2):85–90. https://doi.org/10.1016/j.jchromb.2005.05.026

    Article  CAS  PubMed  Google Scholar 

  16. Xu P, Xu Y, Hu B, Wang J, Pan R, Murugan M, Wu LJ, Tang Y (2015) Extracellular ATP enhances radiation-induced brain injury through microglial activation and paracrine signaling via P2X7 receptor. Brain Behav Immun 50:87–100. https://doi.org/10.1016/j.bbi.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  17. Zierhut M, Dyckhoff S, Masouris I, Klein M, Hammerschmidt S, Pfister HW, Ayata K, Idzko M, Koedel U (2017) Role of purinergic signaling in experimental pneumococcal meningitis. Sci Rep 7:44625. https://doi.org/10.1038/srep44625

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sebastian-Serrano A, de Diego-Garcia L, Henshall DC, Engel T, Diaz-Hernandez M (2018) Haploinsufficient TNAP mice display decreased extracellular ATP levels and expression of Pannexin-1 channels. Front Pharmacol 9:170. https://doi.org/10.3389/fphar.2018.00170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morciano G, Sarti AC, Marchi S, Missiroli S, Falzoni S, Raffaghello L, Pistoia V, Giorgi C, Di Virgilio F, Pinton P (2017) Use of luciferase probes to measure ATP in living cells and animals. Nat Protoc 12(8):1542–1562. https://doi.org/10.1038/nprot.2017.052

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from Spanish Ministry of Science and Education BFU2012-31195 to M.D.-H. European Union project H2020-MSCA-ITN-2017 number 766124 to M.D.-H. and from Universidad Complutense of Madrid (UCM)-Santander Central Hispano Bank PR41/17-21014 to M.D.-H. A.S.-S. was supported by BFU2012-31195 grant, and L.d.D.-G. held a UCM predoctoral fellowship supervised by M.D.-H. C.d.L. and C.B. were hired for an H2020-MSCA-ITN action supervised by M.D.-H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Díaz-Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

de Diego-García, L., Sebastián-Serrano, Á., Bianchi, C., Di Lauro, C., Díaz-Hernández, M. (2020). ATP Measurement in Cerebrospinal Fluid Using a Microplate Reader. In: Pelegrín, P. (eds) Purinergic Signaling. Methods in Molecular Biology, vol 2041. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9717-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9717-6_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9716-9

  • Online ISBN: 978-1-4939-9717-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics