Skip to main content

In Time and Space: Laser Microirradiation and the DNA Damage Response

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1999))

Abstract

Maintenance of genomic integrity depends on the spatiotemporal recruitment and regulation of DNA damage response and repair proteins at DNA damage sites. These highly dynamic processes have been widely studied using laser microirradiation coupled with fluorescence microscopy. Laser microirradiation has provided a powerful methodology to identify and determine mechanisms of DNA damage response pathways. Here we describe methods used to analyze protein recruitment dynamics of fluorescently tagged or endogenous proteins to laser-induced DNA damage sites using laser scanning and fluorescence microscopy. We further describe multiple applications employing these techniques to study additional processes at DNA damage sites including transcription. Together, we aim to provide robust visualization methods employing laser-microirradiation to detect and determine protein behavior, functions and dynamics in response to DNA damage in mammalian cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374. https://doi.org/10.1038/35077232

    Article  CAS  PubMed  Google Scholar 

  2. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204. https://doi.org/10.1016/j.molcel.2010.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078. https://doi.org/10.1038/nature08467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25(5):409–433. https://doi.org/10.1101/gad.2021311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sulli G, Di Micco R, d’Adda di Fagagna F (2012) Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer 12(10):709–720. https://doi.org/10.1038/nrc3344

    Article  CAS  PubMed  Google Scholar 

  6. Aleksandrov R, Dotchev A, Poser I, Krastev D, Georgiev G, Panova G, Babukov Y, Danovski G, Dyankova T, Hubatsch L, Ivanova A, Atemin A, Nedelcheva-Veleva MN, Hasse S, Sarov M, Buchholz F, Hyman AA, Grill SW, Stoynov SS (2018) Protein dynamics in complex DNA lesions. Mol Cell 69(6):1046–1061.e1045. https://doi.org/10.1016/j.molcel.2018.02.016

    Article  CAS  PubMed  Google Scholar 

  7. Petrini JH, Stracker TH (2003) The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 13(9):458–462

    Article  CAS  PubMed  Google Scholar 

  8. Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308(5721):551–554. https://doi.org/10.1126/science.1108297

    Article  CAS  PubMed  Google Scholar 

  9. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  CAS  PubMed  Google Scholar 

  10. Jackson SP, Durocher D (2013) Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell 49(5):795–807. https://doi.org/10.1016/j.molcel.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  11. Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM, Pelletier L, Jackson SP, Durocher D (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318(5856):1637–1640. https://doi.org/10.1126/science.1150034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang B, Elledge SJ (2007) Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci U S A 104(52):20759–20763. https://doi.org/10.1073/pnas.0710061104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gassman NR, Wilson SH (2015) Micro-irradiation tools to visualize base excision repair and single-strand break repair. DNA Repair (Amst) 31:52–63. https://doi.org/10.1016/j.dnarep.2015.05.001

    Article  CAS  PubMed Central  Google Scholar 

  14. Mistrik M, Vesela E, Furst T, Hanzlikova H, Frydrych I, Gursky J, Majera D, Bartek J (2016) Cells and stripes: a novel quantitative photo-manipulation technique. Sci Rep 6:19567. https://doi.org/10.1038/srep19567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Svejstrup JQ (2010) The interface between transcription and mechanisms maintaining genome integrity. Trends Biochem Sci 35(6):333–338. https://doi.org/10.1016/j.tibs.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  16. Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA (2010) ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141(6):970–981. https://doi.org/10.1016/j.cell.2010.04.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gong F, Chiu LY, Cox B, Aymard F, Clouaire T, Leung JW, Cammarata M, Perez M, Agarwal P, Brodbelt JS, Legube G, Miller KM (2015) Screen identifies bromodomain protein ZMYND8 in chromatin recognition of transcription-associated DNA damage that promotes homologous recombination. Genes Dev 29(2):197–211. https://doi.org/10.1101/gad.252189.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gong F, Clouaire T, Aguirrebengoa M, Legube G, Miller KM (2017) Histone demethylase KDM5A regulates the ZMYND8-NuRD chromatin remodeler to promote DNA repair. J Cell Biol 216(7):1959–1974. https://doi.org/10.1083/jcb.201611135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gong F, Miller KM (2018) Double duty: ZMYND8 in the DNA damage response and cancer. Cell Cycle 17(4):414–420. https://doi.org/10.1080/15384101.2017.1376150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adam S, Dabin J, Chevallier O, Leroy O, Baldeyron C, Corpet A, Lomonte P, Renaud O, Almouzni G, Polo SE (2016) Real-time tracking of parental histones reveals their contribution to chromatin integrity following DNA damage. Mol Cell 64(1):65–78. https://doi.org/10.1016/j.molcel.2016.08.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Britton S, Coates J, Jackson SP (2013) A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J Cell Biol 202(3):579–595. https://doi.org/10.1083/jcb.201303073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kong X, Cruz GMS, Silva BA, Wakida NM, Khatibzadeh N, Berns MW, Yokomori K (2018) Laser microirradiation to study in vivo cellular responses to simple and complex DNA damage. J Vis Exp (131). https://doi.org/10.3791/56213

  23. Lukas C, Bartek J, Lukas J (2005) Imaging of protein movement induced by chromosomal breakage: tiny ‘local’ lesions pose great ‘global’ challenges. Chromosoma 114(3):146–154. https://doi.org/10.1007/s00412-005-0011-y

    Article  CAS  PubMed  Google Scholar 

  24. Xie S, Mortusewicz O, Ma HT, Herr P, Poon RY, Helleday T, Qian C (2015) Timeless interacts with PARP-1 to promote homologous recombination repair. Mol Cell 60(1):163–176. https://doi.org/10.1016/j.molcel.2015.07.031

    Article  CAS  PubMed  Google Scholar 

  25. Dobbin MM, Madabhushi R, Pan L, Chen Y, Kim D, Gao J, Ahanonu B, Pao PC, Qiu Y, Zhao Y, Tsai LH (2013) SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat Neurosci 16(8):1008–1015. https://doi.org/10.1038/nn.3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang WY, Pan L, Su SC, Quinn EJ, Sasaki M, Jimenez JC, Mackenzie IR, Huang EJ, Tsai LH (2013) Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat Neurosci 16(10):1383–1391. https://doi.org/10.1038/nn.3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hustedt N, Durocher D (2016) The control of DNA repair by the cell cycle. Nat Cell Biol 19(1):1–9. https://doi.org/10.1038/ncb3452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The K.M.M. laboratory is supported by the NIH National Cancer Institute (R01CA198279 and RO1CA201268) and the American Cancer Society (RSG-16-042-01-DMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle M. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, J.J., Kumbhar, R., Gong, F., Miller, K.M. (2019). In Time and Space: Laser Microirradiation and the DNA Damage Response. In: Balakrishnan, L., Stewart, J. (eds) DNA Repair. Methods in Molecular Biology, vol 1999. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9500-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9500-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9499-1

  • Online ISBN: 978-1-4939-9500-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics