Skip to main content

Neuroprotection in Parkinson Disease

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Parkinson’s disease (PD) is a progressive disorder of the CNS characterized by tremor at rest, bradykinesia (slowness of movement), rigidity and flexed posture. Pathologically, the key deficit is loss of pigmented dopamine-producing neurons in the substantia nigra. Although the cause of the disease remains unknown, considerable progress has been made to expand our knowledge of the clinical features, neuropathology and treatment of the disease since the description of the disease by James Parkinson about 200 years ago.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Ahlskog JE, Uitti RJ. Rasagiline, Parkinson neuroprotection, and delayed-start trials: still no satisfaction? Neurology 2010;74:1143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akaike A, Takada-Takatori Y, Kume T, Izumi Y. Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: role of alpha4 and alpha7 receptors in neuroprotection. J Mol Neurosci 2010;40:211–6.

    Article  CAS  PubMed  Google Scholar 

  • Alberts JL, Linder SM, Penko AL, et al. It is not about the bike, it is about the pedaling: forced exercise and Parkinson’s disease. Exerc Sport Sci Rev 2011;39:177–86.

    PubMed  Google Scholar 

  • Albrecht S, Buerger E. Potential neuroprotection mechanisms in PD: focus on dopamine agonist pramipexole. Curr Med Res Opin 2009;25:2977–87.

    Article  CAS  PubMed  Google Scholar 

  • Aleyasin H, Rousseaux MW, Marcogliese PC, et al. DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway. PNAS 2010;107:3186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen PJ, Feigin A. Gene-based therapies in Parkinson’s disease. Neurotherapeutics 2014;11:60–7.

    Article  CAS  PubMed  Google Scholar 

  • Androutsellis-Theotokis A, Rueger MA, Mkhikian H, et al. Targeting neural precursors in the adult brain rescues injured dopamine neurons. PNAS 2009;106:13570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Am O, Weinreb O, Amit T, Youdim MB. The neuroprotective mechanism of 1-(R)-aminoindan, the major metabolite of the anti-parkinsonian drug rasagiline. J Neurochem 2010;112:1131–7.

    Article  CAS  PubMed  Google Scholar 

  • Bartus RT, Baumann TL, Brown L, et al. Advancing neurotrophic factors as treatments for age-related neurodegenerative diseases: developing and demonstrating “clinical proof-of-concept” for AAV-neurturin (CERE-120) in Parkinson’s disease. Neurobiol Aging 2013;34:35–61.

    Article  CAS  PubMed  Google Scholar 

  • Bayliss JA, Lemus MB, Stark R, et al. Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson’s Disease. J Neurosci 2016;36:3049–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beavan MS, Schapira AH. Glucocerebrosidase mutations and the pathogenesis of Parkinson disease. Ann Med 2013;45: 511–521.

    Article  CAS  PubMed  Google Scholar 

  • Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 2016; 139(Suppl.1):216–31.

    Article  CAS  PubMed  Google Scholar 

  • Bousquet M, Saint-Pierre M, Julien C, et al. Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. FASEB J 2008;22:1213–25.

    Article  CAS  PubMed  Google Scholar 

  • Caudle WM, Richardson JR, Wang MZ, et al. Reduced Vesicular Storage of Dopamine Causes Progressive Nigrostriatal Neurodegeneration. J Neurosci 2007;27:8138–8148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan CS, Gertler TS, Surmeier DJ. A molecular basis for the increased vulnerability of substantia nigra dopamine neurons in aging and Parkinson’s disease. Mov Disord 2010;25 Suppl 1:S63–70.

    Article  PubMed  Google Scholar 

  • Chau KY, Cooper JM, Schapira AH. Pramipexole reduces phosphorylation of α-synuclein at serine-129. J Mol Neurosci 2013;51:573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhang X, Yang D, et al. D2/D3 receptor agonist ropinirole protects dopaminergic cell line against rotenone-induced apoptosis through inhibition of caspase- and JNK-dependent pathways. FEBS Lett 2008;582:603–10.

    Article  CAS  PubMed  Google Scholar 

  • Chen PC, Vargas MR, Pani AK, et al. Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: Critical role for the astrocyte. PNAS 2009;106:2933–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Xiong M, Dong Y, et al. Chemical control of grafted human PSC-derived neurons in a mouse model of Parkinson’s disease. Cell Stem Cell 2016;18:1–10.

    Article  CAS  Google Scholar 

  • Chung CY, Koprich JB, Hallett PJ, Isacson O. Functional enhancement and protection of dopaminergic terminals by RAB3B overexpression. PNAS 2009;106:22474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coupland KG, Mellick GD, Silburn PA, et al. DNA methylation of the MAPT gene in Parkinson’s disease cohorts and modulation by vitamin E in vitro. Mov Disord 2014;29:1606–14.

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Tan X, Wu W, et al. Liver X receptor β protects dopaminergic neurons in a mouse model of Parkinson disease. Proc Natl Acad Sci U S A 2012;109:13112–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Fuente-Fernández R, Appel-Cresswell S, Doudet DJ, Sossi V. Functional neuroimaging in Parkinson’s disease. Expert Opin Med Diagn 2011;5:109–20.

    Article  PubMed  Google Scholar 

  • Dranka BP, Gifford A, Ghosh A, et al. Diapocynin prevents early Parkinson’s disease symptoms in the leucine-rich repeat kinase 2 (LRRK2R1441G) transgenic mouse. Neurosci Lett 2013;549:57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn AR, Stout KA, Ozawa M, et al. Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proc Natl Acad Sci U S A 2017;114:E2253-E2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emborg ME, Liu Y, Xi J, et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Reports 2013;3:646–50.

    Article  CAS  PubMed  Google Scholar 

  • Evatt ML, Delong MR, Kumari M, et al. High Prevalence of Hypovitaminosis D Status in Patients With Early Parkinson Disease. Arch Neurol 2011;68:314–9.

    Article  PubMed  Google Scholar 

  • Faherty CJ, Raviie Shepherd K, Herasimtschuk A, et al. Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism. Brain Res Mol Brain Res 2005;134:170–9.

    Article  CAS  PubMed  Google Scholar 

  • Fenoy AJ, Goetz L, Chabardès S, Xia Y. Deep brain stimulation: are astrocytes a key driver behind the scene? CNS Neurosci Ther 2014;20:191–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira DG, Temido-Ferreira M, Miranda HV, et al. α-synuclein interacts with PrPC to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci 2017; 20: 1569–79.

    Article  CAS  PubMed  Google Scholar 

  • Fujimaki M, Saiki S, Li Y, et al. Serum caffeine and metabolites are reliable biomarkers of early Parkinson disease. Neurology 2018;90:e404-e411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerson JE, Farmer KM, Henson N, et al. Tau oligomers mediate α-synuclein toxicity and can be targeted by immunotherapy. Mol Neurodegener 2018;13:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González-Lizárraga F, Socías SB, Ávila CL, et al. Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species. Sci Rep 2017;7:41755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamamichi S, Rivas RN, Knight AL, et al. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. PNAS 2008;105:728–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser RA, Lew MF, Hurtig HI, et al; TEMPO Open-label Study Group. Long-term outcome of early versus delayed rasagiline treatment in early Parkinson’s disease. Mov Disord 2009;24:564–73.

    Google Scholar 

  • Helmschrodt C, Höbel S, Schöniger S, et al. Polyethylenimine Nanoparticle-Mediated siRNA Delivery to Reduce α-Synuclein Expression in a Model of Parkinson’s Disease. Mol Ther Nucleic Acids 2017;9:57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson EJ, Lord SR, Brodie MA, et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2016;15:249–58.

    Article  CAS  PubMed  Google Scholar 

  • Holemans T, Sørensen DM, van Veen S, et al. A lipid switch unlocks Parkinson’s disease-associated ATP13A2. Proc Natl Acad Sci U S A 2015;112:9040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson G. The ageing brain, mitochondria and neurodegeneration. In: Reeve AK, Simcox EM, Duchen MR, Turnbull DM (eds). Mitochondrial Dysfunction in Neurodegenerative Disorders. 2nd ed. Springer Int Publishing , New York, 2016;59–80.

    Chapter  Google Scholar 

  • Jain KK. Pramipexole. In, Roos RP (ed) MedLink Neurology. Medlink Publishing Corporation, San Diego, California, 2019a.

    Google Scholar 

  • Jain KK. Rasagiline. In, Roos RP (ed) MedLink Neurology. Medlink Publishing Corporation, San Diego, California, 2019b.

    Google Scholar 

  • Jain KK. Ropinirole. In, Roos RP (ed) MedLink Neurology. Medlink Publishing Corporation, San Diego, California, 2019c.

    Google Scholar 

  • Jain KK. Selegiline. In, Roos RP (ed) MedLink Neurology. Medlink Publishing Corporation, San Diego, California, 2019d.

    Google Scholar 

  • Jain KK. Cell Therapy: technologies, companies and markets. Jain Pharma Biotech Publications, Basel, 2019e.

    Google Scholar 

  • Jain KK. Gene Therapy: technologies, companies and markets. Jain PharmaBiotech Publications, Basel, 2019f.

    Google Scholar 

  • Jain KK. Nitric Oxide Therapeutics. Jain PharmaBiotech Publications, Basel, 2019g.

    Google Scholar 

  • Kachroo A, Schwarzschild MA. Adenosine A2A receptor gene disruption protects in an α-synuclein model of Parkinson’s disease. Ann Neurol 2012;71:278–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knekt P, Kilkkinen A, Rissanen H, et al. Serum Vitamin D and the Risk of Parkinson Disease. Arch Neurol 2010;67:808–811.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koob AO, Ubhi K, Paulsson JF, et al. Lovastatin ameliorates alpha-synuclein accumulation and oxidation in transgenic mouse models of alpha-synucleinopathies. Exp Neurol 2010;221:267–74.

    Article  CAS  PubMed  Google Scholar 

  • Lang C, Campbell KR, Ryan BJ, et al. Single-Cell Sequencing of iPSC-Dopamine Neurons Reconstructs Disease Progression and Identifies HDAC4 as a Regulator of Parkinson Cell Phenotypes. Cell Stem Cell 2019;24:93–106.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lautenschläger J, Stephens AD, Fusco G, et al. C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nat Commun 2018;9:712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levine PM, Galesic A, Balana AT, et al. α-Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson’s disease. PNAS 2019 Jan 16; https://doi.org/10.1073/pnas.1808845116 (advance online)

    Article  CAS  Google Scholar 

  • Lee BD, Shin J-H, VanKampen J, et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med 2010;16:998–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis TB, Glasgow JN, Harms AS, Standaert DG, Curiel DT. Fiber-modified adenovirus for central nervous system Parkinson’s disease gene therapy. Viruses 2014;6:3293–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Nguyen JL, Hulleman JD, et al. Mechanisms of DJ-1 neuroprotection in a cellular model of Parkinson’s disease. J Neurochem 2008;105:2435–53.

    Article  CAS  PubMed  Google Scholar 

  • Luk KC, Kehm V, Carroll J, et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice, Science 2012;338:949–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Shaw VE, Mitrofanis J, et al. Does melatonin help save dopaminergic cells in MPTP-treated mice? Parkinsonism Relat Disord 2009;15:307–14.

    Article  PubMed  Google Scholar 

  • Mack JM, Schamne MG, Sampaio TB, et al. Melatoninergic System in Parkinson’s Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms. Oxid Med Cell Longev 2016;2016:3472032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madhavan L, Daley BF, Paumier KL, Collier TJ. Transplantation of subventricular zone neural precursors induces an endogenous precursor cell response in a rat model of Parkinson’s disease. J Comp Neurol 2009;515:102–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mankovska IM, Rosova KV, Gonchar OO, et al. Effect of Capicor on the Parkinson’s disease pathogenic links. Fiziol Zh 2019;64:16–24 [Ukraine].

    Article  Google Scholar 

  • Matak P, Matak A, Moustafa S, et al. Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. Proc Natl Acad Sci U S A 2016;113:3428–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal S, Bjørnevik K, Im DS, et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson’s disease. Science 2017;357:891–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittermeyer G, Christine CW, Rosenbluth KH, et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 2012;23:377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller T. New small molecules for the treatment of Parkinson’s disease. Expert Opin Investig Drugs 2010;19:1077–86.

    Article  PubMed  CAS  Google Scholar 

  • Nakata Y, Yasuda T, Mochizuki H. Recent progress in gene therapy for Parkinson’s disease. Curr Mol Med 2012;12:1311–8.

    Article  CAS  PubMed  Google Scholar 

  • Olanow CW, Rascol O, Hauser R, et al. A Double-Blind, Delayed-Start Trial of Rasagiline in Parkinson’s Disease. NEJM 2009; 361:1268–78.

    Article  CAS  PubMed  Google Scholar 

  • Onofrj M, Bonanni L, Thomas A. An expert opinion on safinamide in Parkinson’s disease. Expert Opin Investig Drugs 2008;17:1115–25.

    Article  CAS  PubMed  Google Scholar 

  • Pagan F, Hebron M, Valadez EH, et al. Nilotinib Effects in Parkinson’s disease and Dementia with Lewy bodies. J Parkinsons Dis 2016;6:503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palfi S, Gurruchaga JM, Ralph GS, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 2014;383:1138–46.

    Article  CAS  PubMed  Google Scholar 

  • Paul G, Zachrisson O, Varrone A, et al. Safety and tolerability of intracerebroventricular PDGF-BB in Parkinson’s disease patients. J Clin Invest 2015;125:1339–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul R, Phukan BC, Justin Thenmozhi A, et al. Melatonin protects against behavioral deficits, dopamine loss and oxidative stress in homocysteine model of Parkinson’s disease. Life Sci 2018;192:238–245.

    Article  CAS  PubMed  Google Scholar 

  • Perni M, Galvagnion C, Maltsev A, et al. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc Natl Acad Sci U S A 2017;114:E1009-E1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pineda A, Burré J. Modulating membrane binding of α-synuclein as a therapeutic strategy. Proc Natl Acad Sci U S A 2017;114:1223–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinna A. Novel investigational adenosine A2A receptor antagonists for Parkinson’s disease. Expert Opin Investig Drugs 2009;18:1619–31.

    Article  CAS  PubMed  Google Scholar 

  • Polanski W, Reichmann H, Gille G. Stimulation, protection and regeneration of dopaminergic neurons by 9-methyl-β-carboline: a new anti-Parkinson drug? Expert Rev Neurother 2011;11:845–60.

    Article  CAS  PubMed  Google Scholar 

  • Rappold PM, Cui M, Grima JC, et al. Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo. Nature Commun 2014; 5:5244.

    Article  CAS  Google Scholar 

  • Renko JM, Bäck S, Voutilainen MH, et al. Mesencephalic astrocyte-derived neurotrophic factor (MANF) elevates stimulus-evoked release of dopamine in freely-moving rats. Mol Neurobiol 2018;55:6755–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseaux MW, Marcogliese PC, Qu D, et al. Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease. Proc Natl Acad Sci U S A 2012;109:15918–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampaio TB, Savall AS, Gutierrez MEZ, Pinton S. Neurotrophic factors in Alzheimer’s and Parkinson’s diseases: implications for pathogenesis and therapy. Neural Regen Res 2017;12:549–57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Santaniello S, McCarthy MM, Montgomery EB, et al. Therapeutic mechanisms of high-frequency stimulation in Parkinson’s disease and neural restoration via loop-based reinforcement. Proc Natl Acad Sci U S A 2015;112:E586–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardi SP, Clark J, Viel C, et al. Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies. PNAS 2013 110:3537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schapira A. Safinamide in the treatment of Parkinson’s disease. Expert Opin Pharmacother 2010;11:2261–8.

    Article  CAS  PubMed  Google Scholar 

  • Schapira HV, Olanow CW, Greenamyre JT, Bezard E. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. The Lancet 2014;384:545–55.

    Article  CAS  Google Scholar 

  • Spathis AD, Asvos X, Ziavra D, et al.Nurr1:RXRα heterodimer activation as monotherapy for Parkinson’s disease. Proc Natl Acad Sci U S A 2017;114:3999–4004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stasi MA, Minetti P, Lombardo K, et al. Animal models of Parkinson′s disease: Effects of two adenosine A2A receptor antagonists ST4206 and ST3932, metabolites of 2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine (ST1535). Eur J Pharmacol 2015;761:353–61.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Yoshioka M, Hashimoto M, et al. Randomized, double-blind, placebo-controlled trial of vitamin D supplement in Parkinson’s disease. Am J Clin Nutr 2013;97:1004–13..

    Article  CAS  PubMed  Google Scholar 

  • Tang T, Li Y, Jiao Q, Du X, Jiang H. Cerebral dopamine neurotrophic factor: a potential therapeutic agent for Parkinson’s disease. Neurosci Bull 2017;33:568–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Valles F, Fiandaca MS, Eberling JL, et al. Qualitative imaging of adeno-associated virus serotype 2-human aromatic L-amino acid decarboxylase gene therapy in a phase I study for the treatment of Parkinson disease. Neurosurgery 2010;67:1377–85.

    Article  PubMed  Google Scholar 

  • Villafane G, Thiriez C, Audureau E, et al. High-dose transdermal nicotine in Parkinson’s disease patients: a randomized, open-label, blinded-endpoint evaluation phase 2 study. Eur J Neurol 2018;25:120–127.

    Article  CAS  PubMed  Google Scholar 

  • Visanji NP, Orsi A, Johnston TH, et al. PYM50028, a novel, orally active, nonpeptide neurotrophic factor inducer, prevents and reverses neuronal damage induced by MPP+ in mesencephalic neurons and by MPTP in a mouse model of Parkinson’s disease. FASEB J 2008;22:2488–97.

    Article  CAS  PubMed  Google Scholar 

  • Voutilainen MH, Bäck S, Pörsti E, et al. Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson’s disease. J Neurosci 2009;29:9651–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West AB. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease. Exp Neurol 2017;298(Pt B):236–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wongprayoon P, Govitrapong P. Melatonin as a mitochondrial protector in neurodegenerative diseases. Cell Mol Life Sci 2017;74:3999–4014.

    Article  CAS  PubMed  Google Scholar 

  • Yue W, Chen Z, Liu H, Yan C, Chen M, Feng D, et al. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Nat Publ Gr 2014; 24:482–96.

    CAS  Google Scholar 

  • Zeng W, Zhang W, Lu F, et al. Resveratrol attenuates MPP+-induced mitochondrial dysfunction and cell apoptosis via AKT/GSK-3β pathway in SN4741 cells. Neurosci Lett 2017;637:50–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jain, K.K. (2019). Neuroprotection in Parkinson Disease. In: The Handbook of Neuroprotection. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9465-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9465-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9464-9

  • Online ISBN: 978-1-4939-9465-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics