Skip to main content

In Silico Approaches for TRP Channel Modulation

  • Protocol
  • First Online:
Book cover TRP Channels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1987))

Abstract

The implication of several TRP ion channels (e.g., TRPV1) in diverse physiological and pathological processes has signaled them as pivotal drug targets. Consequently, the identification of selective and potent ligands for these channels is of great interest in pharmacology and biomedicine. However, a major challenge in the design of modulators is ensuring the specificity for their intended targets. In recent years, the emergence of high-resolution structures of ion channels facilitates the computer-assisted drug design at molecular levels. Here we describe some computational methods and general protocols to discover channel modulators, including homology modelling, docking and virtual screening, and structure-based peptide design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vennekens R, Owsianik G, Nilius B (2008) Vanilloid transient receptor potential cation channels: an overview. Curr Pharm Des 14(1):18–31

    Article  CAS  PubMed  Google Scholar 

  2. Cortright DN, Szallasi A (2009) TRP channels and pain. Curr Pharm Des 15(15):1736–1749

    Article  CAS  PubMed  Google Scholar 

  3. Bacigalupo J, Delgado R, Muñoz Y et al (2015) TRP channels in visual transduction. In: Madrid R, Bacigalupo J (eds) TRP channels in sensory transduction. Springer International Publishing, Cham

    Google Scholar 

  4. Montell C, Caterina MJ (2007) Thermoregulation: channels that are cool to the core. Curr Biol 17(20):R885–R887

    Article  CAS  PubMed  Google Scholar 

  5. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Latorre R, Brauchi S, Orta G et al (2007) ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium 42(4–5):427–438

    Article  CAS  PubMed  Google Scholar 

  7. Caterina MJ, Leffler A, Malmberg AB et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464):306–313

    Article  CAS  PubMed  Google Scholar 

  8. García-Martinez C, Humet M, Planells-Cases R et al (2002) Attenuation of thermal nociception and hyperalgesia by VR1 blockers. Proc Natl Acad Sci U S A 99(4):2374–2379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Fernández-Ballester G, Fernández-Carvajal A, González-Ros JM et al (2011) Ionic channels as targets for drug design: a review on computational methods. Pharmaceutics 3(4):932–953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Klebe G (2006) Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 11(13–14):580–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem Biol Interact 171(2):165–176

    Article  CAS  PubMed  Google Scholar 

  12. Grisshammer R, Tate CG (1995) Overexpression of integral membrane proteins for structural studies. Q Rev Biophys 28(3):315–422

    Article  CAS  PubMed  Google Scholar 

  13. Liao M, Cao E, Julius D et al (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504(7478):107–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Henderson R (2013) Structural biology: ion channel seen by electron microscopy. Nature 504(7478):93–94

    Article  CAS  PubMed  Google Scholar 

  15. Clapham DE (2015) Structural biology: pain-sensing TRPA1 channel resolved. Nature 520(7548):439–441

    Article  CAS  PubMed  Google Scholar 

  16. Huynh KW, Cohen MR, Jiang J et al (2016) Structure of the full-length TRPV2 channel by cryo-EM. Nat Commun 7:11130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saotome K, Singh AK, Yelshanskaya MV et al (2016) Crystal structure of the epithelial calcium channel TRPV6. Nature 534(7608):506–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gabanyi MJ, Berman HM (2012) Structural databases of biological macromolecules. Wiley, Chichester

    Book  Google Scholar 

  19. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Laskowski RA, Hutchinson EG, Michie AD et al (1997) PDBsum: a web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22(12):488–490

    Article  CAS  PubMed  Google Scholar 

  21. de Beer TA, Berka K, Thornton JM et al (2014) PDBsum additions. Nucleic Acids Res 42:D292–D296

    Article  PubMed  CAS  Google Scholar 

  22. De Las Rivas J, Fontanillo C (2010) Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6(6):e1000807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Orchard S, Ammari M, Aranda B et al (2014) The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42:D358–D363

    Article  CAS  PubMed  Google Scholar 

  24. Mosca R, Céol A, Stein A et al (2014) 3DID: a catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Res 42:D374–D379

    Article  CAS  PubMed  Google Scholar 

  25. Chatr-Aryamontri A, Oughtred R, Boucher L et al (2017) The BioGRID interaction database: 2017 update. Nucleic Acids Res 45(D1):D369–D379

    Article  CAS  PubMed  Google Scholar 

  26. Li W, Cowley A, Uludag M et al (2015) The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res 43(W1):W580–W584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McWilliam H, Li W, Uludag M et al (2013) Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res 41(Web Server issue):W597–W600

    Article  PubMed  PubMed Central  Google Scholar 

  28. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Polyanovsky VO, Roytberg MA, Tumanyan VG (2011) Comparative analysis of the quality of a global algorithm and a local algorithm for alignment of two sequences. Algorithms Mol Biol 6(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brudno M, Malde S, Poliakov A et al (2003) Global alignment: finding rearrangements during alignment. Bioinformatics 19:54–62

    Article  Google Scholar 

  31. Schrödinger L (2015) The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC

    Google Scholar 

  32. Krieger E, Vriend G (2014) YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics 30(20):2981–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krieger E, Vriend G (2015) New ways to boost molecular dynamics simulations. J Comput Chem 36(13):996–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(Web Server issue):W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30(Suppl 1):S162–S173

    Article  PubMed  Google Scholar 

  36. Webb B, Sali A (2014) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 47:1–32

    Article  Google Scholar 

  37. Martí-Renom MA, Stuart AC, Fiser A et al (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  PubMed  Google Scholar 

  38. Skolnick J, Brylinski M (2009) FINDSITE: a combined evolution/structure-based approach to protein function prediction. Brief Bioinform 10(4):378–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mukherjee S, Zhang Y (2011) Protein-protein complex structure predictions by multimeric threading and template recombination. Structure 19(7):955–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schmidtke P, Le Guilloux V, Maupetit J et al (2010) FPocket: online tools for protein ensemble pocket detection and tracking. Nucleic Acids Res 38:W582–W589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weisel M, Proschak E, Schneider G (2007) PocketPicker: analysis of ligand binding-sites with shape descriptors. Chem Cent J 1(7):1–17

    Google Scholar 

  42. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748

    Article  CAS  PubMed  Google Scholar 

  44. London N, Raveh B, Cohen E et al (2011) Rosetta FlexPepDock web server—high resolution modeling of peptide-protein interactions. Nucleic Acids Res 39(Web Server issue):W249–W253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320(2):369–387

    Article  CAS  PubMed  Google Scholar 

  46. Schymkowitz J, Borg J, Stricher F et al (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:W382–W388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16(1):11–26

    Article  CAS  PubMed  Google Scholar 

  48. Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295(2):337–356

    Article  CAS  PubMed  Google Scholar 

  49. Lamichhane M, Gezelter JD, Newman KE (2014) Real space electrostatics for multipoles. I. Development of methods. J Chem Phys 141(13):134109

    Article  PubMed  CAS  Google Scholar 

  50. Lamichhane M, Newman KE, Gezelter JD (2014) Real space electrostatics for multipoles. II. Comparisons with the Ewald sum. J Chem Phys 141(13):134110

    Article  PubMed  CAS  Google Scholar 

  51. Lindahl E, Hess B, Dvd S (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. Mol Model Ann 7(8):306–317

    Article  CAS  Google Scholar 

  52. Jiang W, Phillips JC, Huang L et al (2014) generalized scalable multiple copy algorithms for molecular dynamics simulations in NAMD. Comput Phys Commun 185(3):908–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Canutescu AA, Shelenkov AA, Dunbrack RL (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 12(9):2001–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Morris GM, Goodsell DS, Halliday RS et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  55. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rubinstein M, Niv MY (2009) Peptidic modulators of protein-protein interactions: progress and challenges in computational design. Biopolymers 91(7):505–513

    Article  CAS  PubMed  Google Scholar 

  57. Fernandez-Ballester G, Serrano L (2006) Prediction of protein–protein interaction based on structure. In: Guerois R, de la Paz ML (eds) Protein design: methods and applications. Humana Press, Totowa, NJ

    Google Scholar 

  58. Fernandez-Ballester G, Beltrao P, Gonzalez JM et al (2009) Structure-based prediction of the Saccharomyces cerevisiae SH3-ligand interactions. J Mol Biol 388(4):902–916

    Article  CAS  PubMed  Google Scholar 

  59. Encinar JA, Fernandez-Ballester G, Sánchez IE et al (2009) ADAN: a database for prediction of protein-protein interaction of modular domains mediated by linear motifs. Bioinformatics 25(18):2418–2424

    Article  CAS  PubMed  Google Scholar 

  60. García-Sanz N, Fernández-Carvajal A, Morenilla-Palao C et al (2004) Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J Neurosci 24(23):5307–5314

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. García-Sanz N, Valente P, Gomis A et al (2007) A role of the transient receptor potential domain of vanilloid receptor I in channel gating. J Neurosci 27(43):11641–11650

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Valente P, García-Sanz N, Gomis A et al (2008) Identification of molecular determinants of channel gating in the transient receptor potential box of vanilloid receptor I. FASEB J 22(9):3298–3309

    Article  CAS  PubMed  Google Scholar 

  63. Peczuh MW, Hamilton AD (2000) Peptide and protein recognition by designed molecules. Chem Rev 100(7):2479–2494

    Article  CAS  PubMed  Google Scholar 

  64. London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18(2):188–199

    Article  CAS  PubMed  Google Scholar 

  65. Ye G, Tiwari R, Parang K (2008) Development of Src tyrosine kinase substrate binding site inhibitors. Curr Opin Investig Drugs 9(6):605–613

    CAS  PubMed  Google Scholar 

  66. Valente P, Fernández-Carvajal A, Camprubí-Robles M et al (2011) Membrane-tethered peptides patterned after the TRP domain (TRPducins) selectively inhibit TRPV1 channel activity. FASEB J 25(5):1628–1640

    Article  CAS  PubMed  Google Scholar 

  67. Watt PM (2006) Screening for peptide drugs from the natural repertoire of biodiverse protein folds. Nat Biotechnol 24(2):177–183

    Article  CAS  PubMed  Google Scholar 

  68. Vanhee P, van der Sloot AM, Verschueren E et al (2011) Computational design of peptide ligands. Trends Biotechnol 29(5):231–239

    Article  CAS  PubMed  Google Scholar 

  69. Fernández-Ballester G, Fernández-Carvajal A, Devesa I et al (2011) In silico-based direct evolution of peptides and peptidomimetics in drug discovery. Curr Top Pharmacol 15:35–55

    Google Scholar 

  70. Reina J, Lacroix E, Hobson SD et al (2002) Computer-aided design of a PDZ domain to recognize new target sequences. Nat Struct Biol 9(8):621–627

    CAS  PubMed  Google Scholar 

  71. Benyamini H, Friedler A (2010) Using peptides to study protein-protein interactions. Future Med Chem 2(6):989–1003

    Article  CAS  PubMed  Google Scholar 

  72. Torbeev VY, Kent SB (2007) Convergent chemical synthesis and crystal structure of a 203 amino acid “covalent dimer” HIV-1 protease enzyme molecule. Angew Chem Int Ed Engl 46(10):1667–1670

    Article  CAS  PubMed  Google Scholar 

  73. Vlieghe P, Lisowski V, Martinez J et al (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15(1–2):40–56

    Article  CAS  PubMed  Google Scholar 

  74. Grauer A, Konig B (2009) Peptidomimetics—A versatile route to biologically active compounds. J Org Chem 2009(30):5099–5113

    Google Scholar 

  75. Vagner J, Qu H, Hruby VJ (2008) Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol 12(3):292–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agencia Estatal de Investigación (AEI, MINECO) (SAF2016-66275-C02-01) and Generalitat Valenciana PROMETEO/2014/011. MNK is a recipient of an Industrial Doctorate Fellowship from MINECO (DI-16-08303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregorio Fernandez-Ballester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nikolaeva Koleva, M., Fernandez-Ballester, G. (2019). In Silico Approaches for TRP Channel Modulation. In: Ferrer-Montiel, A., Hucho, T. (eds) TRP Channels. Methods in Molecular Biology, vol 1987. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9446-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9446-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9445-8

  • Online ISBN: 978-1-4939-9446-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics