Skip to main content

Capillary Electrophoresis Mass Spectrometry as a Tool for Untargeted Metabolomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1978))

Abstract

Although capillary electrophoresis (CE) coupled to mass spectrometry (MS) is a separation technique not extensively implemented, it offers differential possibilities in the study of polar and ionic metabolites in complex matrices with minimum sample treatment. However, in order to get successful results, some efforts at early stages and following specific recommendations are necessary.

In this chapter, we describe our updated and well-tested methods for untargeted metabolomics using CE-MS-TOF for common biological samples: urine, serum or plasma, feces, tissues, and cells. Sample treatment, as well as separation and detection conditions are described in detail and other steps in the workflow for untargeted metabolomics are also explained. Special attention is paid to instrumental setup and advices for daily practice.

Characteristic electropherograms obtained with each type of sample are depicted as well as groups of metabolites easily measured by this technique. Their global or individual comparisons have been given undoubtedly important information to unveil altered metabolic pathways, diagnosis, and prognosis or biomarker discovery in the study of diseases or conditions over decades.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Garcia A, Godzien J, Lopez-Gonzalvez A, Barbas C (2017) Capillary electrophoresis mass spectrometry as a tool for untargeted metabolomics. Bioanalysis 9(1):99–130. https://doi.org/10.4155/bio-2016-0216

    Article  CAS  PubMed  Google Scholar 

  2. Canuto GA, Castilho-Martins EA, Tavares MF, Rivas L, Barbas C, López-Gonzálvez Á (2014) Multi-analytical platform metabolomic approach to study miltefosine mechanism of action and resistance in Leishmania. Anal Bioanal Chem 406(14):3459–3476. https://doi.org/10.1007/s00216-014-7772-1

    Article  CAS  PubMed  Google Scholar 

  3. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS (2011) The human serum metabolome. PLoS One 6(2):e16957. https://doi.org/10.1371/journal.pone.0016957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu Z, Kastenmüller G, He Y, Belcredi P, Möller G, Prehn C, Mendes J, Wahl S, Roemisch-Margl W, Ceglarek U, Polonikov A, Dahmen N, Prokisch H, Xie L, Li Y, Wichmann HE, Peters A, Kronenberg F, Suhre K, Adamski J, Illig T, Wang-Sattler R (2011) Differences between human plasma and serum metabolite profiles. PLoS One 6(7):e21230. https://doi.org/10.1371/journal.pone.0021230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dudzik D, Barbas-Bernardos C, García A, Barbas C (2018) Quality assurance procedures for mass spectrometry untargeted metabolomics. A review. J Pharm Biomed Anal 147:149–173. https://doi.org/10.1016/j.jpba.2017.07.044

    Article  CAS  PubMed  Google Scholar 

  6. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Bork P, Wang J, Ehrlich SD, Pedersen O, MetaHIT consortium (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546. https://doi.org/10.1038/nature12506

    Article  CAS  PubMed  Google Scholar 

  7. Loftfield E, Vogtmann E, Sampson JN, Moore SC, Nelson H, Knight R, Chia N, Sinha R (2016) Comparison of collection methods for fecal samples for discovery metabolomics in epidemiologic studies. Cancer Epidemiol Biomark Prev 25(11):1483–1490. https://doi.org/10.1158/1055-9965.EPI-16-0409

    Article  Google Scholar 

  8. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161(2):264–276. https://doi.org/10.1016/j.cell.2015.02.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferrer M, Raczkowska BA, Martínez-Martínez M, Barbas C, Rojo D (2017) Phenotyping of gut microbiota: focus on capillary electrophoresis. Electrophoresis 38(18):2275–2286. https://doi.org/10.1002/elps.201700056

    Article  CAS  PubMed  Google Scholar 

  10. Naz S, Moreira dos Santos DC, García A, Barbas C (2014) Analytical protocols based on LC-MS, GC-MS and CE-MS for nontargeted metabolomics of biological tissues. Bioanalysis 6(12):1657–1677. https://doi.org/10.4155/bio.14.119

    Article  CAS  PubMed  Google Scholar 

  11. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–453. https://doi.org/10.1038/nm.2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buescher JM, Liebermeister W, Jules M, Uhr M, Muntel J, Botella E, Hessling B, Kleijn RJ, Le Chat L, Lecointe F, Mäder U, Nicolas P, Piersma S, Rügheimer F, Becher D, Bessieres P, Bidnenko E, Denham EL, Dervyn E, Devine KM, Doherty G, Drulhe S, Felicori L, Fogg MJ, Goelzer A, Hansen A, Harwood CR, Hecker M, Hubner S, Hultschig C, Jarmer H, Klipp E, Leduc A, Lewis P, Molina F, Noirot P, Peres S, Pigeonneau N, Pohl S, Rasmussen S, Rinn B, Schaffer M, Schnidder J, Schwikowski B, Van Dijl JM, Veiga P, Walsh S, Wilkinson AJ, Stelling J, Aymerich S, Sauer U (2012) Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science 335(6072):1099–1103. https://doi.org/10.1126/science.1206871

    Article  CAS  PubMed  Google Scholar 

  13. Mastrangelo A, Panadero MI, Pérez LM, Gálvez BG, García A, Barbas C, Rupérez FJ (2016) New insight on obesity and adipose-derived stem cells using comprehensive metabolomics. Biochem J 473(14):2187–2203. https://doi.org/10.1042/BCJ20160241

    Article  CAS  PubMed  Google Scholar 

  14. Godzien J, Ciborowski M, Angulo S, Barbas C (2013) From numbers to a biological sense: how the strategy chosen for metabolomics data treatment may affect final results. A practical example based on urine fingerprints obtained by LC-MS. Electrophoresis 34(19):2812–2826. https://doi.org/10.1002/elps.201300053

    Article  CAS  PubMed  Google Scholar 

  15. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 3(3):211–221. https://doi.org/10.1007/s11306-007-0082-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O (2015) Mass spectral databases for LC/MS and GC/MS-based metabolomics: state of the field and future prospects. TrAC Trends Anal Chem 78:23–35

    Google Scholar 

  17. Gil de la Fuente A, Grace Armitage E, Otero A, Barbas C, Godzien J (2017) Differentiating signals to make biological sense—a guide through databases for MS-based non-targeted metabolomics. Electrophoresis 38(18):2242–2256. https://doi.org/10.1002/elps.201700070

    Article  CAS  PubMed  Google Scholar 

  18. Godzien J, Armitage EG, Angulo S, Martinez-Alcazar MP, Alonso-Herranz V, Otero A, Lopez-Gonzalvez A, Barbas C (2015) In-source fragmentation and correlation analysis as tools for metabolite identification exemplified with CE-TOF untargeted metabolomics. Electrophoresis 36(18):2188–2195. https://doi.org/10.1002/elps.201500016

    Article  CAS  PubMed  Google Scholar 

  19. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN, Nicholls AW, Wilson ID, Kell DB, Goodacre R, Consortium HSMH (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6(7):1060–1083. https://doi.org/10.1038/nprot.2011.335

    Article  CAS  PubMed  Google Scholar 

  20. Domínguez-Álvarez J, Rodríguez-Gonzalo E, Hernández-Méndez J, Carabias-Martínez R (2011) Programmed nebulizing gas pressure for efficient and stable capillary electrophoresis-mass spectrometry analysis of anionic compounds in positive separation mode. Anal Chem 83(7):2834–2839. https://doi.org/10.1021/ac1032897

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Spanish Ministerio de Economía y Competitividad (CTQ2014-55279-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coral Barbas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

López-Gonzálvez, Á., Godzien, J., García, A., Barbas, C. (2019). Capillary Electrophoresis Mass Spectrometry as a Tool for Untargeted Metabolomics. In: D'Alessandro, A. (eds) High-Throughput Metabolomics. Methods in Molecular Biology, vol 1978. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9236-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9236-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9235-5

  • Online ISBN: 978-1-4939-9236-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics