Skip to main content

The Control of Glucose and Lactate Levels in Nutrient Medium After Cell Incubation and in Microdialysates of Human Adipose Tissue by Capillary Electrophoresis with Contactless Conductivity Detection

  • Protocol
  • First Online:
Book cover Clinical Applications of Capillary Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1972))

Abstract

Two methods of capillary electrophoresis with contactless conductivity detection have been developed for monitoring the levels of glucose and lactate in clinical samples. The separations are performed in uncoated fused silica capillaries with inner diameter 10 or 20 μm, total length 31.5 cm, length to detector 18 cm, using an Agilent electrophoretic instrument with an integrated contactless conductivity detector. Glucose is determined in optimized background electrolyte, 50 mM NaOH with pH 12.6 and 2-deoxyglucose is used as an internal standard; the determination of lactate is performed in 40 mM CHES/NaOH with pH 9.4 and lithium cations as an internal standard. Both substances are determined in minimal volumes of (1) nutrient media after cell incubation, and (2) microdialysates of human adipose tissue; after dilution and filtration as the only treatment of the sample. The migration time of glucose is 2.5 min and that of lactate is 1.5 min with detection limits at the micromolar concentration level. The developed techniques are suitable for sequential monitoring of glucose and lactate over time during metabolic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saylor RA, Lunte SM (2015) A review of microdialysis coupled to microchip electrophoresis for monitoring biological events. J Chromatogr A 1382:48–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nandi P, Lunte SM (2009) Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review. Anal Chim Acta 651(1):1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brunner M, Derendorf H (2006) Clinical microdialysis: current applications and potential use in drug development. TrAC Trends Anal Chem 25(7):674–680

    Article  CAS  Google Scholar 

  4. Rainville PD, Theodoridis G, Plumb RS, Wilson ID (2014) Advances in liquid chromatography coupled to mass spectrometry for metabolic phenotyping. TrAC Trends Anal Chem 61:181–191

    Article  CAS  Google Scholar 

  5. Ban E, Park SH, Kang MJ, Lee HJ, Song EJ, Yoo YS (2012) Growing trend of CE at the omics level: the frontier of systems biology – an update. Electrophoresis 33(1):2–13

    Article  CAS  PubMed  Google Scholar 

  6. Phillips TM (2018) Recent advances in CE and microchip-CE in clinical applications: 2014 to mid-2017. Electrophoresis 39(1):126–135

    Article  CAS  PubMed  Google Scholar 

  7. Kubáň P, Hauser PC (2018) 20th anniversary of axial capacitively coupled contactless conductivity detection in capillary electrophoresis. TrAC Trends Anal Chem 102:311–321

    Article  Google Scholar 

  8. Kubáň P, Hauser PC (2017) Contactless conductivity detection for analytical techniques Developments from 2014 to 2016. Electrophoresis 38(1):95–114

    Article  PubMed  Google Scholar 

  9. Šolínová V, Kašička V (2006) Recent applications of conductivity detection in capillary and chip electrophoresis. J Sep Sci 29(12):1743–1762

    Article  PubMed  Google Scholar 

  10. Tůma P (2014) Large volume sample stacking for rapid and sensitive determination of antidiabetic drug metformin in human urine and serum by capillary electrophoresis with contactless conductivity detection. J Chromatogr A 1345:207–211

    Article  PubMed  Google Scholar 

  11. Tůma P, Gojda J (2015) Rapid determination of branched chain amino acids in human blood plasma by pressure-assisted capillary electrophoresis with contactless conductivity detection. Electrophoresis 36(16):1969–1975

    Article  PubMed  Google Scholar 

  12. Tůma P, Samcová E, Štulík K (2011) Determination of the spectrum of low molecular mass organic acids in urine by capillary electrophoresis with contactless conductivity and ultraviolet photometric detection-An efficient tool for monitoring of inborn metabolic disorders. Anal Chim Acta 685(1):84–90

    Article  PubMed  Google Scholar 

  13. Tůma P, Málková K, Samcová E, Štulík K (2011) Rapid monitoring of mono- and disaccharides in drinks, foodstuffs and foodstuff additives by capillary electrophoresis with contactless conductivity detection. Anal Chim Acta 698(1–2):1–5

    Article  PubMed  Google Scholar 

  14. Adeva-Andany M, Lopez-Ojen M, Funcasta-Calderon R, Ameneiros-Rodriguez E, Donapetry-Garcia C, Vila-Altesor M, Rodriguez-Seijas J (2014) Comprehensive review on lactate metabolism in human health. Mitochondrion 17:76–100

    Article  CAS  PubMed  Google Scholar 

  15. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol-Cell Physiol 292(1):C125–C136

    Article  CAS  PubMed  Google Scholar 

  16. Koppo K, Larrouy D, Marques MA, Berlan M, Bajzova M, Polak J, Van de Voorde J, Bulow J, Lafontan M, Crampes F, Langin D, Stich V, de Glisezinski I (2010) Lipid mobilization in subcutaneous adipose tissue during exercise in lean and obese humans. Roles of insulin and natriuretic peptides. Am J Physiol-Endocrinol Metab 299(2):E258–E265

    Article  CAS  PubMed  Google Scholar 

  17. Guder WG, Narayanan S, Wisser H, Zawta B (2009) Diagnostic samples: from the patient to the laboratory. Wiley-VCH, Weinheim

    Google Scholar 

  18. Lauer HH, Rozing GP (2010) High performance capillary electrophoresis, a primer, 2nd edn. Agilent Technologies, Germany

    Google Scholar 

  19. Jaroš M, Soga T, van de Goor T, Gaš B (2005) Conductivity detection in capillary zone electrophoresis: Inspection by PeakMaster. Electrophoresis 26(10):1948–1953

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Agency of the Czech Republic, Grant No. 18-04902S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Tůma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tůma, P. (2019). The Control of Glucose and Lactate Levels in Nutrient Medium After Cell Incubation and in Microdialysates of Human Adipose Tissue by Capillary Electrophoresis with Contactless Conductivity Detection. In: Phillips, T.M. (eds) Clinical Applications of Capillary Electrophoresis. Methods in Molecular Biology, vol 1972. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9213-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9213-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9212-6

  • Online ISBN: 978-1-4939-9213-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics