Skip to main content

Protein Expression Analysis by Western Blot and Protein–Protein Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1968))

Abstract

Western blot analysis is widely used for detecting protein expression, analysis of protein–protein interactions, and searching for new biomarkers. Also, it is a diagnostic tool used for detection of human diseases and microorganism infections.

Some Streptococcus pneumoniae proteins are important virulence factors and a few of them are diagnostic markers. Here, we describe the detection of two pneumococcal proteins, pneumolysin and PpmA, in human urine by using monoclonal and polyclonal antibodies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  Google Scholar 

  2. Magi B, Liberatori S (2005) Immunoblotting techniques. Methods Mol Biol 295:227–254

    CAS  PubMed  Google Scholar 

  3. Chi-Chih K, Yamauchi KA, Vlassakis J, Sinkala E, Duncombe TA, Herr AE (2016) Single cell-resolution western blotting. Nat Protoc 11:1508–1530

    Article  Google Scholar 

  4. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Article  CAS  Google Scholar 

  5. Pluskal M, Przekop M, Kavonian M (1986) Immobilon® PVDF transfer membrane: a new membrane substrate for Western blotting of proteins. BioTechniques 4:272–283

    CAS  Google Scholar 

  6. Komatsu S (2015) Western blotting using PVDF membranes and its downstream applications. Methods Mol Biol 1312:227–236

    Article  Google Scholar 

  7. Yakunin AF, Hallenbeck PC (2001) A luminol/iodophenol chemiluminescent detection system for western immunoblots. In: Van Dyke K, Van Dyke C, Woodfork K (eds) Luminescence biotechnology: instruments and applications. CRC Press

    Google Scholar 

  8. Gingrich JC, Davis DR, Nguyen Q (2000) Multiplex detection and quantitation of proteins on western blots using fluorescent probes. BioTechniques 29:636–642

    Article  CAS  Google Scholar 

  9. Kondo Y, Higa S, Iwasaki T, Matsumoto T, Maehara K, Harada A, Baba Y, Fujita M, Ohkawa Y (2018) Sensitive detection of fluorescence in western blotting by merging images. PLoS One 13:e0191532

    Article  Google Scholar 

  10. Wu Y, Li Q, Chen XZ (2007) Detecting protein-protein interactions by far western blotting. Nat Protoc 2:3278–3284

    Article  CAS  Google Scholar 

  11. Rognon B, Reboux G, Roussel S, Barrera C, Dalphin JC, Fellrath JM, Monod M, Millon L (2015) Western blotting as a tool for the serodiagnosis of farmer’s lung disease: validation with Lichtheimia corymbifera protein extracts. J Med Microbiol 64:359–368

    Article  Google Scholar 

  12. García HH, Cancrini G, Bartalesi F, Rodriguez S, Jimenez JA, Roldan W, Mantella A, Nicoletti A, Bartoloni A (2007) Evaluation of immunodiagnostics for toxocarosis in experimental porcine cysticercosis. Tropical Med Int Health 12:107–110

    Google Scholar 

  13. Tappe D, Grüner B, Kern P, Frosch M (2008) Evaluation of a commercial Echinococcus Western blot assay for serological follow-up of patients with alveolar echinococcosis. Clin Vaccine Immunol 15:1633–1637

    Article  CAS  Google Scholar 

  14. Aslan M, Yüksel P, Polat E, Cakan H, Ergin S, Öner YA, Zengin K, Arıkan S, Saribas S, Torun MM, Kocazeybek B (2011) The diagnostic value of Western blot method in patients with cystic echinococcosis. New Microbiol 34:173–177

    PubMed  Google Scholar 

  15. Magi B, Migliorini L (2011) Western blotting for the diagnosis of congenital toxoplasmosis. New Microbiol 34:93–95

    PubMed  Google Scholar 

  16. Gómez-Morales MA, Ludovisi A, Amati M, Blaga R, Zivojinovic M, Ribicich M, Pozio E (2012) A distinctive Western blot pattern to recognize Trichinella infections in humans and pigs. Int J Parasitol 42:1017–1023

    Article  Google Scholar 

  17. Madan T, Priyadarsiny P, Vaid M, Kamal N, Shah A, Haq W, Katti SB, Sarma PU (2004) Use of a synthetic peptide epitope of asp f 1, a major allergen or antigen of Aspergillus fumigatus, for improved immunodiagnosis of allergic bronchopulmonary aspergillosis. Clin Diagn Lab Immunol 11:552–558

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stopiglia CDO, Arechavala A, Carissimi M, Sorrentino JM, Aquino VR, Daboit TC, Kammler L, Negroni R, Scroferneker ML (2012) Standardization and characterization of antigens for the diagnosis of aspergillosis. Can J Microbiol 58:455–462

    Article  CAS  Google Scholar 

  19. Torian LV, Forgione LA, Punsalang AE, Pirillo RE, Oleszko WR (2011) Comparison of multispot EIA with Western blot for confirmatory serodiagnosis of HIV. J Clin Virol 52:S41–S44

    Article  Google Scholar 

  20. Hughesa AJ, Herra AE (2012) Microfluidic Western blotting. Proc Natl Acad Sci U S A 109:21450–21455

    Article  Google Scholar 

  21. Evans R, Mavin S, McDonagh S, Chatterton JM, Milner R, Ho-Yen DO (2010) More specific bands in the IgG western blot in sera from Scottish patients with suspected Lyme borreliosis. J Clin Pathol 63:719–721

    Article  Google Scholar 

  22. Gilbert RJ, Jiménez JL, Chen S, Tickle IJ, Rossjohn J, Parker M, Andrew PW, Saibil HR (1999) Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Cell 97:647–655

    Article  CAS  Google Scholar 

  23. Coleman JR, Papamichail D, Yano M, García-Suárez MM, Pirofski LA (2011) Designed reduction of Streptococcus pneumoniae pathogenicity via synthetic changes in virulence factor codon-pair bias. J Infect Dis 203:1264–1273

    Article  CAS  Google Scholar 

  24. Shak JR, Ludewick HP, Howery KE, Sakai F, Yi H, Harvey RM, Paton JC, Klugman KP, Vidal JE (2013) Novel role for the Streptococcus pneumoniae toxin pneumolysin in the assembly of biofilms. MBio 4:e00655–e00613. https://doi.org/10.1128/mBio.00655-13.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mitchell TJ, Dalziel CE (2014) The biology of pneumolysin. Subcell Biochem 80:145–160

    Article  CAS  Google Scholar 

  26. Khan MN, Coleman JR, Vernatter J, Varshney AK, Dufaud C, Pirofski LA (2014) An ahemolytic pneumolysin of Streptococcus pneumoniae manipulates human innate and CD4+ T-cell responses and reduces resistance to colonization in mice in a serotype-independent manner. J Infect Dis 210:1658–1669

    Article  CAS  Google Scholar 

  27. Gilbert RJ (2010) Cholesterol-dependent cytolysins. Adv Exp Med Biol 677:56–66

    Article  CAS  Google Scholar 

  28. Farrand AJ, Hotze EM, Sato TK, Wade KR, Wimley WC, Johnson AE, Tweten RK (2015) The cholesterol-dependent cytolysin membrane-binding interface discriminates lipid environments of cholesterol to support β-barrel pore insertion. J Biol Chem 290:17733–17744

    Article  CAS  Google Scholar 

  29. Lukoyanova N, Hoogenboom BW, Saibil HR (2016) The membrane attack complex, perforin and cholesterol-dependent cytolysin superfamily of pore-forming proteins. J Cell Sci 129:2125–2133

    Article  CAS  Google Scholar 

  30. Ünal CM, Steinert M (2014) Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol Mol Biol Rev 78:544–571

    Article  Google Scholar 

  31. Dimou M, Venieraki A, Katinakis P (2017) Microbial cyclophilins: specialized functions in virulence and beyond. World J Microbiol Biotechnol 33:164. https://doi.org/10.1007/s11274-017-2330-6

    Article  CAS  PubMed  Google Scholar 

  32. Overweg K, Kerr A, Sluijter M, Jackson MH, Mitchell TJ, de Jong AP, de Groot R, Hermans PW (2000) The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses. Infect Immun 7:4180–4188

    Article  Google Scholar 

  33. Hermans PW, Adrian PV, Albert C, Estevão S, Hoogenboezem T, Luijendijk IH, Kamphausen T, Hammerschmidt S (2006) The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonization. J Biol Chem 281:968–976

    Article  CAS  Google Scholar 

  34. Cilloniz C, Martin-Loeches I, Garcia-Vidal C, San Jose A, Torres A (2016) Microbial etiology of pneumonia: epidemiology, diagnosis and resistance patterns. Int J Mol Sci 17:2120. https://doi.org/10.3390/ijms17122120

    Article  CAS  PubMed Central  Google Scholar 

  35. Saukkoriipi A, Pascal T, Palmu AA (2016) Evaluation of the BinaxNOW® Streptococcus pneumoniae antigen test on fresh, frozen and concentrated urine samples in elderly patients with and without community-acquired pneumonia. J Microbiol Methods 121:24–26

    Article  Google Scholar 

  36. Gina P, Randall PJ, Muchinga TE, Pooran A, Meldau R, Peter JG, Dheda K (2017) Early morning urine collection to improve urinary lateral flow LAM assay sensitivity in hospitalised patients with HIV-TB co-infection. BMC Infect Dis 17:339. https://doi.org/10.1186/s12879-017-2313-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Syam AF, Miftahussurur M, Uwan W, Simanjuntak D, Uchida T, Yamaoka Y (2015) Validation of urine test for detection of Helicobacter pylori infection in Indonesian population. Biomed Res Int 2015:152823. https://doi.org/10.1155/2015/152823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saengjaruk P, Chaicumpa W, Watt G, Bunyaraksyotin G, Wuthiekanun V, Tapchaisri P, Sittinont C, Panaphut T, Tomanakan K, Sakolvaree Y, Chongsa-Nguan M, Mahakunkijcharoen Y, Kalambaheti T, Naigowit P, Wambangco MAL, Kurazono H, Hayashi H (2002) Diagnosis of human leptospirosis by monoclonal antibody-based antigen detection in urine. J Clin Microbiol 40:480–489

    Article  CAS  Google Scholar 

  39. Theel ES, Jespersen DJ, Harring J, Mandrekar J, Binnicker MJ (2013) Evaluation of an enzyme immunoassay for detection of histoplasma capsulatum antigen from urine specimens. J Clin Microbiol 51:3555–3559

    Article  CAS  Google Scholar 

  40. Chuansumrit A, Chaiyaratana W, Tangnararatchakit K, Yoksan S, Flamand M, Sakuntabhai A (2011) Dengue nonstructural protein 1 antigen in the urine as a rapid and convenient diagnostic test during the febrile stage in patients with dengue infection. Diagn Microbiol Infect Dis 71:467–469

    Article  CAS  Google Scholar 

  41. Cima-Cabal MD, Méndez FJ, Vázquez F, Aranaz C, Rodríguez-Alvarez J, García-García JM, Fleites A, Martínez González-Río J, Molinos L, de Miguel D, de los Toyos JR (2003) Immunodetection of pneumolysin in human urine by ELISA. J Microbiol Methods 54:47–55

    Article  CAS  Google Scholar 

  42. García-Suárez MM, Cron LE, Suárez-Alvarez B, Villaverde R, González-Rodríguez I, Vázquez F, Hermans PW, Méndez FJ (2009) Diagnostic detection of Streptococcus pneumoniae PpmA in urine. Clin Microbiol Infect 15:443–453

    Article  Google Scholar 

  43. Cima-Cabal MD, Vázquez F, de los Toyos JR, Méndez FJ (1999) Rapid and reliable identification of Streptococcus pneumoniae isolates by pneumolysin-mediated agglutination. J Clin Microbiol 37:1964–1966

    CAS  PubMed  PubMed Central  Google Scholar 

  44. de los Toyos JR, Mendez FJ, Aparicio JF, Vazquez F, Garcia-Suarez MM, Fleites A, Hardisson C, Morgan PJ, Andrew PW, Mitchell TJ (1996) Functional analysis of pneumolysin by use of monoclonal antibodies. Infect Immun 64:480–484

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Federico Iovino from Karolinska Institute for inviting us to write this chapter and for reviewing the manuscript, and Dr. Fermín Torrano for his constant support in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María del Mar García-Suárez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cima-Cabal, M.D., Vazquez, F., de los Toyos, J.R., del Mar García-Suárez, M. (2019). Protein Expression Analysis by Western Blot and Protein–Protein Interactions. In: Iovino, F. (eds) Streptococcus pneumoniae. Methods in Molecular Biology, vol 1968. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9199-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9199-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9198-3

  • Online ISBN: 978-1-4939-9199-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics