Skip to main content

55 Years of the Rossmann Fold

  • Protocol
  • First Online:
Protein Supersecondary Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1958))

Abstract

The Rossmann fold is one of the most commonly observed structural domains in proteins. The fold is composed of consecutive alternating β-strands and α-helices that form a layer of β-sheet with one (or two) layer(s) of α-helices. Here, we will discuss the Rossmann fold starting from its discovery 55 years ago, then overview entries of the fold in the major protein classification databases, SCOP and CATH, as well as the number of the occurrences of the fold in genomes. We also discuss the Rossmann fold as an interesting target of protein engineering as the site-directed mutagenesis of the fold can alter the ligand-binding specificity of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawson NL, Lewis TE, Das S, Lees JG, Lee D, Ashford P, Orengo CA, Sillitoe I (2017) CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res 45(Database issue):D282–D295. https://doi.org/10.1093/nar/gkw1098

    Article  CAS  Google Scholar 

  2. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: A structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(7):536–540. https://doi.org/10.1016/S0022-2836(05)80134-2

    Article  CAS  PubMed  Google Scholar 

  3. Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North AC (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution, obtained by X-ray analysis. Nature 185(4711):416–422. https://doi.org/10.1038/185416a0

    Article  CAS  PubMed  Google Scholar 

  4. Adams MJ, Ford GC, Koekeok R, Lentz PJ, McPherson A, Rossmann MG, Smiley IE, Schevitz RW, Wonacott AJ (1970) Structure of lactate dehydrogenase at 2.8 Å resolution. Nature 227:1098–1103. https://doi.org/10.1038/2271098a0

    Article  CAS  PubMed  Google Scholar 

  5. Rossmann MG, Adams MJ, Buehner M, Ford GC, Hackert ML, Lentz PJ, McPherson A, Schevitz RW, Smiley IE (1972) Structural constraints on possible mechanisms of lactate dehydrogenase as shown by high resolution studies of the apoenzyme and a variety of enzyme complexes. Cold Spring Harb Symp Quant Biol 36:176–191

    Article  Google Scholar 

  6. Buehner M, Ford GC, Moras D, Olsen KW, Rossmann MG (1973) D-glyceraldehyde-3-phosphate dehydrogenase: three-dimensional structure and evolutionary significance. Proc Natl Acad Sci U S A 70(11):3052–3054. https://doi.org/10.1073/pnas.70.11.3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rao ST, Rossmann MG (1973) Comparison of super-secondary structures in proteins. J Mol Biol 76(2):241–256. https://doi.org/10.1016/0022-2836(73)90388-4

    Article  CAS  PubMed  Google Scholar 

  8. Schulz GE, Schirmer RH, Pai EF (1982) FAD-binding site of glutathione reductase. J Mol Biol 160(2):287–308. https://doi.org/10.1016/0022-2836(82)90177-2

    Article  CAS  PubMed  Google Scholar 

  9. Hanukoglu I (2015) Proteopedia: Rossmann fold: a beta-alpha-beta fold at dinucleotide binding sites. Biochem Mol Biol Educ 43(3):206–209. https://doi.org/10.1002/bmb.20849

    Article  CAS  PubMed  Google Scholar 

  10. Hanukoglu I, Gutfinger T (1989) cDNA sequence of adrenodoxin reductase. Identification of NADP-binding sites in oxidoreductases. Eur J Biochem 180(2):479–484. https://doi.org/10.1111/j.1432-1033.1989.tb14671.x

    Article  CAS  PubMed  Google Scholar 

  11. Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343(6253):38–43. https://doi.org/10.1038/343038a0

    Article  CAS  PubMed  Google Scholar 

  12. Fox NK, Brenner SE, Chandonia JM (2014) SCOPe: structural classification of proteins-extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 42(Database issue):D304–D309. https://doi.org/10.1093/nar/gkt1240

    Article  CAS  PubMed  Google Scholar 

  13. Michie AD, Orengo CA, Thornton JM (1996) Analysis of domain structural class using an automated class assignment protocol. J Mol Biol 262(2):168–185. https://doi.org/10.1006/j,bi.1996.0506

    Article  CAS  PubMed  Google Scholar 

  14. Orengo CA, Brown NP, Taylor WR (1992) Fast structure assignment for protein databank searching. Proteins 14(2):139–167. https://doi.org/10.1002/prot.340140203

    Article  CAS  PubMed  Google Scholar 

  15. Wolf YI, Brenner SE, Bash PA, Koonin EV (1999) Distribution of protein folds in the three superkingdoms of life. Genome Res 9(1):17–26. https://doi.org/10.1101/gr.9.1.17

    Article  CAS  PubMed  Google Scholar 

  16. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hegyi H, Lin J, Greenbaum D, Gerstein M (2002) Structural genomics analysis: characteristics of atypical, common, and horizontally transferred folds. Proteins 47(2):126–141. https://doi.org/10.1002/prot.10078

    Article  CAS  PubMed  Google Scholar 

  18. Kihara D, Skolnick J (2004) Microbial genomes have over 72% structure assignment by the threading algorithm PROSPECTOR_Q. Proteins 55(2):464–473. https://doi.org/10.1002/prot.20044

    Article  CAS  PubMed  Google Scholar 

  19. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 1988(85):2444–2448. https://doi.org/10.1073/pnas.85.8.2444

    Article  Google Scholar 

  20. Pieper U, Eswar N, Davis FP, Braberg H, Madhusudhan MS, Rossi A, Marti-Renom M, Karchin R, Webb BM, Eramian D, Shen MY, Kelly L, Melo F, Sali A (2006) MODBASE: a database of annotated comparative proteins structure models and associated resources. Nucleic Acids Res 34(Database issue):D291–D295. https://doi.org/10.1093/nar/gkj059

    Article  CAS  PubMed  Google Scholar 

  21. Webb B, Sali A (2016) Comparative protein structure modeling using modeller. Curr Protoc Bioinformatics 54:5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3

    Article  Google Scholar 

  22. Li Y, Cirino PC (2014) Recent advances in engineering proteins for biocatalysis. Biotechnol Bioeng 111(7):1273–1287. https://doi.org/10.1002/bit.25240

    Article  CAS  PubMed  Google Scholar 

  23. Maddock DJ, Patrick WM, Gerth ML (2015) Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity. Protein Eng Des Sel 28(8):251–258. https://doi.org/10.1093/protein/gzv028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brinkmann-Chen S, Flock T, Cahn JKB, Snow CD, Brustad EM, McIntosh JA, Meinhold P, Zhang L, Arnold FH (2013) General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NAD. Proc Natl Acad Sci U S A 110(27):10946–10951. https://doi.org/10.1073/pnas.1306073110

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are thankful for Lyman Monroe for proofreading the manuscript. This work was partly supported by the National Institute of General Medical Sciences of the NIH (R01GM123055) and the National Science Foundation (DMS1614777, CMMI1825941).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Kihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shin, WH., Kihara, D. (2019). 55 Years of the Rossmann Fold. In: Kister, A. (eds) Protein Supersecondary Structures. Methods in Molecular Biology, vol 1958. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9161-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9161-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9160-0

  • Online ISBN: 978-1-4939-9161-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics